Properties

Label 34558531338240.a.4198072320._.A
Order $ 2^{3} \cdot 3 \cdot 7^{3} $
Index $ 2^{15} \cdot 3^{3} \cdot 5 \cdot 13 \cdot 73 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^3:S_4$
Order: \(8232\)\(\medspace = 2^{3} \cdot 3 \cdot 7^{3} \)
Index: \(4198072320\)\(\medspace = 2^{15} \cdot 3^{3} \cdot 5 \cdot 13 \cdot 73 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $\left(\begin{array}{llll}\alpha^{4} & \alpha^{3} & 0 & \alpha^{4} \\ \alpha^{6} & \alpha^{4} & 1 & \alpha^{6} \\ 0 & \alpha & \alpha^{3} & \alpha^{2} \\ \alpha^{5} & \alpha^{4} & \alpha^{6} & \alpha^{4} \\ \end{array}\right), \left(\begin{array}{llll}0 & 1 & \alpha^{4} & \alpha \\ \alpha^{4} & \alpha^{5} & \alpha & \alpha^{5} \\ \alpha^{3} & \alpha^{3} & 0 & \alpha^{4} \\ \alpha^{3} & \alpha^{3} & 1 & \alpha^{5} \\ \end{array}\right), \left(\begin{array}{llll}\alpha^{2} & \alpha^{3} & 0 & \alpha^{3} \\ 1 & \alpha^{4} & 0 & \alpha^{4} \\ \alpha^{5} & \alpha^{5} & \alpha & \alpha^{4} \\ \alpha^{4} & \alpha & \alpha^{5} & 0 \\ \end{array}\right)$ Copy content Toggle raw display
Derived length: $4$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $\SL(4,8)$
Order: \(34558531338240\)\(\medspace = 2^{18} \cdot 3^{4} \cdot 5 \cdot 7^{3} \cdot 13 \cdot 73 \)
Exponent: \(1195740\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \cdot 73 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(207351188029440\)\(\medspace = 2^{19} \cdot 3^{5} \cdot 5 \cdot 7^{3} \cdot 13 \cdot 73 \)
$\operatorname{Aut}(H)$ $C_7^3:(C_6\times S_4)$, of order \(49392\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7^{3} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_7^3:S_4$
Normal closure:$\SL(4,8)$
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$4198072320$
Möbius function not computed
Projective image not computed