Properties

Label 3440.a.5.a1.a1
Order $ 2^{4} \cdot 43 $
Index $ 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_8\times C_{43}$
Order: \(688\)\(\medspace = 2^{4} \cdot 43 \)
Index: \(5\)
Exponent: \(344\)\(\medspace = 2^{3} \cdot 43 \)
Generators: $b^{1290}, b^{860}, b^{40}, b^{215}, a$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $D_8\times C_{215}$
Order: \(3440\)\(\medspace = 2^{4} \cdot 5 \cdot 43 \)
Exponent: \(1720\)\(\medspace = 2^{3} \cdot 5 \cdot 43 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Quotient group ($Q$) structure

Description: $C_5$
Order: \(5\)
Exponent: \(5\)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{84}\times C_8:C_2^2$
$\operatorname{Aut}(H)$ $C_{168}:C_2^3$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{168}:C_2^3$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_{430}$
Normalizer:$D_8\times C_{215}$
Complements:$C_5$
Minimal over-subgroups:$D_8\times C_{215}$
Maximal under-subgroups:$D_4\times C_{43}$$D_4\times C_{43}$$C_{344}$$D_8$

Other information

Möbius function$-1$
Projective image$C_5\times D_4$