Subgroup ($H$) information
Description: | $D_8\times C_{43}$ |
Order: | \(688\)\(\medspace = 2^{4} \cdot 43 \) |
Index: | \(5\) |
Exponent: | \(344\)\(\medspace = 2^{3} \cdot 43 \) |
Generators: |
$b^{1290}, b^{860}, b^{40}, b^{215}, a$
|
Nilpotency class: | $3$ |
Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).
Ambient group ($G$) information
Description: | $D_8\times C_{215}$ |
Order: | \(3440\)\(\medspace = 2^{4} \cdot 5 \cdot 43 \) |
Exponent: | \(1720\)\(\medspace = 2^{3} \cdot 5 \cdot 43 \) |
Nilpotency class: | $3$ |
Derived length: | $2$ |
The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).
Quotient group ($Q$) structure
Description: | $C_5$ |
Order: | \(5\) |
Exponent: | \(5\) |
Automorphism Group: | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
Outer Automorphisms: | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times C_{84}\times C_8:C_2^2$ |
$\operatorname{Aut}(H)$ | $C_{168}:C_2^3$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_{168}:C_2^3$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Centralizer: | $C_{430}$ | |||
Normalizer: | $D_8\times C_{215}$ | |||
Complements: | $C_5$ | |||
Minimal over-subgroups: | $D_8\times C_{215}$ | |||
Maximal under-subgroups: | $D_4\times C_{43}$ | $D_4\times C_{43}$ | $C_{344}$ | $D_8$ |
Other information
Möbius function | $-1$ |
Projective image | $C_5\times D_4$ |