Subgroup ($H$) information
Description: | $C_{344}$ |
Order: | \(344\)\(\medspace = 2^{3} \cdot 43 \) |
Index: | \(10\)\(\medspace = 2 \cdot 5 \) |
Exponent: | \(344\)\(\medspace = 2^{3} \cdot 43 \) |
Generators: |
$b^{215}, b^{40}, b^{860}, b^{430}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $D_8\times C_{215}$ |
Order: | \(3440\)\(\medspace = 2^{4} \cdot 5 \cdot 43 \) |
Exponent: | \(1720\)\(\medspace = 2^{3} \cdot 5 \cdot 43 \) |
Nilpotency class: | $3$ |
Derived length: | $2$ |
The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).
Quotient group ($Q$) structure
Description: | $C_{10}$ |
Order: | \(10\)\(\medspace = 2 \cdot 5 \) |
Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
Automorphism Group: | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
Outer Automorphisms: | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times C_{84}\times C_8:C_2^2$ |
$\operatorname{Aut}(H)$ | $C_2^2\times C_{42}$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^2\times C_{42}$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(32\)\(\medspace = 2^{5} \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_{1720}$ | |
Normalizer: | $D_8\times C_{215}$ | |
Complements: | $C_{10}$ $C_{10}$ | |
Minimal over-subgroups: | $C_{1720}$ | $D_8\times C_{43}$ |
Maximal under-subgroups: | $C_{172}$ | $C_8$ |
Other information
Möbius function | $1$ |
Projective image | $C_5\times D_4$ |