Properties

Label 344.11.8.a1.a1
Order $ 43 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{43}$
Order: \(43\)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(43\)
Generators: $c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $43$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_2\times D_{86}$
Order: \(344\)\(\medspace = 2^{3} \cdot 43 \)
Exponent: \(86\)\(\medspace = 2 \cdot 43 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(2\)
Automorphism Group: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2.C_{129}.C_{42}.C_2$
$\operatorname{Aut}(H)$ $C_{42}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{42}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(1032\)\(\medspace = 2^{3} \cdot 3 \cdot 43 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{86}$
Normalizer:$C_2\times D_{86}$
Complements:$C_2^3$
Minimal over-subgroups:$C_{86}$$C_{86}$$C_{86}$$D_{43}$$D_{43}$$D_{43}$$D_{43}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$-8$
Projective image$C_2\times D_{86}$