Properties

Label 344.11.4.a1.a1
Order $ 2 \cdot 43 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{86}$
Order: \(86\)\(\medspace = 2 \cdot 43 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(86\)\(\medspace = 2 \cdot 43 \)
Generators: $c^{43}, c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_2\times D_{86}$
Order: \(344\)\(\medspace = 2^{3} \cdot 43 \)
Exponent: \(86\)\(\medspace = 2 \cdot 43 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2.C_{129}.C_{42}.C_2$
$\operatorname{Aut}(H)$ $C_{42}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_{42}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(344\)\(\medspace = 2^{3} \cdot 43 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{86}$
Normalizer:$C_2\times D_{86}$
Complements:$C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$
Minimal over-subgroups:$D_{86}$$D_{86}$$C_2\times C_{86}$
Maximal under-subgroups:$C_{43}$$C_2$
Autjugate subgroups:344.11.4.a1.b1344.11.4.a1.c1

Other information

Möbius function$2$
Projective image$D_{86}$