Properties

Label 339738624.fz.663552._.B
Order $ 2^{9} $
Index $ 2^{13} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^9$
Order: \(512\)\(\medspace = 2^{9} \)
Index: \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)
Exponent: \(2\)
Generators: $\langle(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(21,22)(23,24), (17,18)(19,20)(21,22) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_2^{12}.(A_4:S_4^2.A_4)$
Order: \(339738624\)\(\medspace = 2^{22} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^5.A_4^3:A_4$
Order: \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Automorphism Group: Group of order \(3822059520\)\(\medspace = 2^{20} \cdot 3^{6} \cdot 5 \)
Outer Automorphisms: $C_5^3:C_{20}.Q_8$, of order \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)
Nilpotency class: $-1$
Derived length: $4$

The quotient is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(86973087744\)\(\medspace = 2^{30} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $\GL(9,2)$, of order \(699\!\cdots\!200\)\(\medspace = 2^{36} \cdot 3^{5} \cdot 5^{2} \cdot 7^{3} \cdot 17 \cdot 31 \cdot 73 \cdot 127 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed