Properties

Label 3360.x.40.a1.a1
Order $ 2^{2} \cdot 3 \cdot 7 $
Index $ 2^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7:C_{12}$
Order: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Index: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $\langle(9,13,11,12), (9,11)(12,13), (2,8,7,4,5,6,3), (3,6,4)(5,8,7)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.

Ambient group ($G$) information

Description: $F_5\times F_8:C_3$
Order: \(3360\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient set structure

Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 40T2718.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times F_8:C_3$, of order \(3360\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_7:C_3$, of order \(21\)\(\medspace = 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_7:C_3$, of order \(21\)\(\medspace = 3 \cdot 7 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_7:C_{12}$
Normal closure:$F_5\times F_8:C_3$
Core:$C_1$
Minimal over-subgroups:$F_8:C_{12}$$C_{35}:C_{12}$
Maximal under-subgroups:$C_7:C_6$$C_{28}$$C_{12}$

Other information

Number of subgroups in this conjugacy class$40$
Möbius function$1$
Projective image$F_5\times F_8:C_3$