Subgroup ($H$) information
Description: | $C_7:C_{28}$ |
Order: | \(196\)\(\medspace = 2^{2} \cdot 7^{2} \) |
Index: | \(17\) |
Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Generators: |
$a^{119}, a^{238}, b, a^{340}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Ambient group ($G$) information
Description: | $C_7:C_{476}$ |
Order: | \(3332\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 17 \) |
Exponent: | \(476\)\(\medspace = 2^{2} \cdot 7 \cdot 17 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
Description: | $C_{17}$ |
Order: | \(17\) |
Exponent: | \(17\) |
Automorphism Group: | $C_{16}$, of order \(16\)\(\medspace = 2^{4} \) |
Outer Automorphisms: | $C_{16}$, of order \(16\)\(\medspace = 2^{4} \) |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^2\times C_{48}\times F_7$ |
$\operatorname{Aut}(H)$ | $C_{14}:C_6^2$, of order \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_{14}:C_6^2$, of order \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(16\)\(\medspace = 2^{4} \) |
$W$ | $D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \) |
Related subgroups
Centralizer: | $C_{238}$ | ||
Normalizer: | $C_7:C_{476}$ | ||
Complements: | $C_{17}$ | ||
Minimal over-subgroups: | $C_7:C_{476}$ | ||
Maximal under-subgroups: | $C_7\times C_{14}$ | $C_7:C_4$ | $C_{28}$ |
Other information
Möbius function | $-1$ |
Projective image | $D_7\times C_{17}$ |