Properties

Label 3332.b.17.a1.a1
Order $ 2^{2} \cdot 7^{2} $
Index $ 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7:C_{28}$
Order: \(196\)\(\medspace = 2^{2} \cdot 7^{2} \)
Index: \(17\)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $a^{119}, a^{238}, b, a^{340}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_7:C_{476}$
Order: \(3332\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 17 \)
Exponent: \(476\)\(\medspace = 2^{2} \cdot 7 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{17}$
Order: \(17\)
Exponent: \(17\)
Automorphism Group: $C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
Outer Automorphisms: $C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_{48}\times F_7$
$\operatorname{Aut}(H)$ $C_{14}:C_6^2$, of order \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{14}:C_6^2$, of order \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \)

Related subgroups

Centralizer:$C_{238}$
Normalizer:$C_7:C_{476}$
Complements:$C_{17}$
Minimal over-subgroups:$C_7:C_{476}$
Maximal under-subgroups:$C_7\times C_{14}$$C_7:C_4$$C_{28}$

Other information

Möbius function$-1$
Projective image$D_7\times C_{17}$