Properties

Label 3332.b.119.a1.a1
Order $ 2^{2} \cdot 7 $
Index $ 7 \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7:C_4$
Order: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Index: \(119\)\(\medspace = 7 \cdot 17 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $a^{119}, b, a^{238}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a direct factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_7:C_{476}$
Order: \(3332\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 17 \)
Exponent: \(476\)\(\medspace = 2^{2} \cdot 7 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{119}$
Order: \(119\)\(\medspace = 7 \cdot 17 \)
Exponent: \(119\)\(\medspace = 7 \cdot 17 \)
Automorphism Group: $C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Outer Automorphisms: $C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 7,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_{48}\times F_7$
$\operatorname{Aut}(H)$ $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \)

Related subgroups

Centralizer:$C_{238}$
Normalizer:$C_7:C_{476}$
Complements:$C_{119}$ $C_{119}$ $C_{119}$ $C_{119}$
Minimal over-subgroups:$C_7:C_{68}$$C_7:C_{28}$
Maximal under-subgroups:$C_{14}$$C_4$

Other information

Möbius function$1$
Projective image$D_7\times C_{119}$