Properties

Label 32928.bb.168.e1.a1
Order $ 2^{2} \cdot 7^{2} $
Index $ 2^{3} \cdot 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7\times D_{14}$
Order: \(196\)\(\medspace = 2^{2} \cdot 7^{2} \)
Index: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $ad^{7}f^{6}, e^{2}f^{12}, d^{2}e^{6}, e^{7}f^{7}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $(C_7\times C_{14}^2):S_4$
Order: \(32928\)\(\medspace = 2^{5} \cdot 3 \cdot 7^{3} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.C_2^4.C_6^2.C_2$
$\operatorname{Aut}(H)$ $C_{14}:C_6^2$, of order \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
$W$$D_{14}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_7\times C_{14}$
Normalizer:$C_7\times C_7\times D_{14}:C_2$
Normal closure:$(C_7\times C_{14}^2):S_4$
Core:$C_1$
Minimal over-subgroups:$D_{14}\times C_7^2$$C_{14}\wr C_2$
Maximal under-subgroups:$C_7\times C_{14}$$C_7\times D_7$$C_2\times C_{14}$$D_{14}$

Other information

Number of subgroups in this conjugacy class$12$
Möbius function$0$
Projective image$(C_7\times C_{14}^2):S_4$