Subgroup ($H$) information
Description: | $C_8$ |
Order: | \(8\)\(\medspace = 2^{3} \) |
Index: | \(41\) |
Exponent: | \(8\)\(\medspace = 2^{3} \) |
Generators: |
$a$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is maximal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $2$-Sylow subgroup (hence a Hall subgroup), and a $p$-group.
Ambient group ($G$) information
Description: | $C_{41}:C_8$ |
Order: | \(328\)\(\medspace = 2^{3} \cdot 41 \) |
Exponent: | \(328\)\(\medspace = 2^{3} \cdot 41 \) |
Derived length: | $2$ |
The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times F_{41}$, of order \(3280\)\(\medspace = 2^{4} \cdot 5 \cdot 41 \) |
$\operatorname{Aut}(H)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
$\operatorname{res}(S)$ | $C_2$, of order \(2\) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_8$ |
Normalizer: | $C_8$ |
Normal closure: | $C_{41}:C_8$ |
Core: | $C_2$ |
Minimal over-subgroups: | $C_{41}:C_8$ |
Maximal under-subgroups: | $C_4$ |
Other information
Number of subgroups in this conjugacy class | $41$ |
Möbius function | $-1$ |
Projective image | $C_{41}:C_4$ |