Properties

Label 324000.bp.81000.f1
Order $ 2^{2} $
Index $ 2^{3} \cdot 3^{4} \cdot 5^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(81000\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $ab^{3}d^{17}e^{6}f^{8}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $C_{15}^3.(C_4\times S_4)$
Order: \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{12}\times D_6$
Normalizer:$C_{12}\times D_6$
Normal closure:$(C_{15}^3.A_4):C_4$
Core:$C_1$
Minimal over-subgroups:$F_5$$F_5$$F_5$$F_5$$F_5$$C_{12}$$C_{12}$$C_{12}$$C_3:C_4$$C_3:C_4$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$
Maximal under-subgroups:$C_2$

Other information

Number of subgroups in this autjugacy class$2250$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-18$
Projective image$C_{15}^3.(C_4\times S_4)$