Subgroup ($H$) information
Description: | $(C_{15}^3.A_4):C_4$ |
Order: | \(162000\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5^{3} \) |
Index: | \(2\) |
Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
Generators: |
$d^{6}, f^{3}, f^{10}, b^{6}cd^{26}e^{12}f^{10}, d^{20}, cd^{16}e^{11}f^{5}, e^{10}, ab^{9}d^{12}e^{6}f^{6}, b^{4}cd^{4}e^{14}, d^{15}e^{6}f^{12}, e^{3}$
|
Derived length: | $4$ |
The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and solvable. Whether it is monomial has not been computed.
Ambient group ($G$) information
Description: | $C_{15}^3.(C_4\times S_4)$ |
Order: | \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \) |
Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \) |
$\operatorname{Aut}(H)$ | $D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \) |
$W$ | $C_{15}^3.(C_4\times S_4)$, of order \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \) |
Related subgroups
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $-1$ |
Projective image | $C_{15}^3.(C_4\times S_4)$ |