Properties

Label 324000.bp.4.c1
Order $ 2^{3} \cdot 3^{4} \cdot 5^{3} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}^3.S_4$
Order: \(81000\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5^{3} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Generators: $e^{3}, d^{6}e^{9}, b^{4}cd^{28}e^{2}f^{6}, e^{10}, d^{15}e^{12}f^{9}, f^{10}, af^{12}, cd^{22}e^{2}f^{5}, d^{20}, f^{3}$ Copy content Toggle raw display
Derived length: $4$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_{15}^3.(C_4\times S_4)$
Order: \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$W$$C_{15}^3.(C_4\times S_4)$, of order \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_{15}^3.(C_4\times S_4)$
Complements:$C_4$ $C_4$ $C_4$ $C_4$
Minimal over-subgroups:$C_3^3:D_5\wr S_3$
Maximal under-subgroups:$C_{15}^3.A_4$$C_{15}^3.D_4$$(C_3\times C_{15}^2):D_{15}$$C_5^3:S_4$$C_3^3:S_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{15}^3.(C_4\times S_4)$