Properties

Label 324000.bm.900.h1
Order $ 2^{3} \cdot 3^{2} \cdot 5 $
Index $ 2^{2} \cdot 3^{2} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_5.S_3^2$
Order: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Index: \(900\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $acd^{15}e^{8}f^{7}, e^{3}f^{9}, b^{6}d^{24}f^{12}, d^{20}, b^{3}d^{21}e^{10}f^{8}, e^{10}f^{5}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{15}^3.(C_4\times S_4)$
Order: \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $F_5\times S_3^2$, of order \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
$W$$D_5.S_3^2$, of order \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$S_3$
Normalizer:$D_5.S_3^3$
Normal closure:$C_{15}^3.(C_4\times S_4)$
Core:$C_1$
Minimal over-subgroups:$S_3\times C_{15}:F_5$$(C_{15}\times D_{15}):C_4$$S_3\times C_{15}:C_{12}$$D_{10}.S_3^2$
Maximal under-subgroups:$C_{15}:D_6$$C_{15}:C_{12}$$C_3^2:F_5$$C_{30}:C_4$$S_3\times F_5$$C_6.D_6$

Other information

Number of subgroups in this autjugacy class$150$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^3.(C_4\times S_4)$