Subgroup ($H$) information
| Description: | $D_5.S_3^2$ | 
| Order: | \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \) | 
| Index: | \(900\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{2} \) | 
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) | 
| Generators: | 
		
    $acd^{15}e^{8}f^{7}, e^{3}f^{9}, b^{6}d^{24}f^{12}, d^{20}, b^{3}d^{21}e^{10}f^{8}, e^{10}f^{5}$
    
    
    
         | 
| Derived length: | $2$ | 
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_{15}^3.(C_4\times S_4)$ | 
| Order: | \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \) | 
| Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) | 
| Derived length: | $4$ | 
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \) | 
| $\operatorname{Aut}(H)$ | $F_5\times S_3^2$, of order \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \) | 
| $W$ | $D_5.S_3^2$, of order \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \) | 
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $150$ | 
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | not computed | 
| Projective image | $C_{15}^3.(C_4\times S_4)$ |