Properties

Label 324000.bm.1800.cd1
Order $ 2^{2} \cdot 3^{2} \cdot 5 $
Index $ 2^{3} \cdot 3^{2} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}:C_{12}$
Order: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Index: \(1800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $b^{3}cd^{17}e^{3}f, b^{6}e^{3}f^{12}, e^{10}f^{10}, d^{20}e^{10}, d^{6}e^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{15}^3.(C_4\times S_4)$
Order: \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $D_6\times F_5$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
$W$$C_{30}:C_4$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_3\times S_3$
Normalizer:$D_5.S_3^3$
Normal closure:$C_{15}^3.C_4.C_2^2$
Core:$C_1$
Minimal over-subgroups:$C_{15}^2:C_4$$C_{15}^2:C_4$$C_3^3:F_5$$D_5.S_3^2$$C_{30}:C_{12}$$D_5.S_3^2$
Maximal under-subgroups:$C_3^2\times D_5$$C_{15}:C_4$$C_3\times F_5$$C_3:C_{12}$

Other information

Number of subgroups in this autjugacy class$150$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^3.(C_4\times S_4)$