Properties

Label 324000.bm.432.e1
Order $ 2 \cdot 3 \cdot 5^{3} $
Index $ 2^{4} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\wr S_3$
Order: \(750\)\(\medspace = 2 \cdot 3 \cdot 5^{3} \)
Index: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $acd^{15}e^{11}f^{10}, b^{4}cd^{3}e^{5}f^{13}, d^{6}e^{9}, f^{3}, e^{3}f^{3}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $C_{15}^3.(C_4\times S_4)$
Order: \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $C_5^2:(S_3\times C_4^2)$, of order \(2400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \)
$W$$C_5^2:(C_4\times S_3)$, of order \(600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \)

Related subgroups

Centralizer:$C_{15}$
Normalizer:$C_5^3:C_6.D_6$
Normal closure:$C_{15}^3.S_4$
Core:$C_5^3$
Minimal over-subgroups:$C_5^3:S_4$$C_3\times C_5\wr S_3$$C_5^3:D_6$
Maximal under-subgroups:$C_5\wr C_3$$D_5\times C_5^2$$C_5^2:S_3$$C_5\times S_3$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^3.(C_4\times S_4)$