Subgroup ($H$) information
Description: | $C_5^3$ |
Order: | \(125\)\(\medspace = 5^{3} \) |
Index: | \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) |
Exponent: | \(5\) |
Generators: |
$d^{6}e^{12}, f^{3}, e^{3}f^{9}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $5$-Sylow subgroup (hence a Hall subgroup), and a $p$-group (hence elementary and hyperelementary).
Ambient group ($G$) information
Description: | $C_{15}^3.(C_4\times S_4)$ |
Order: | \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \) |
Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
Description: | $C_3^3:(C_4\times S_4)$ |
Order: | \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Automorphism Group: | $C_2^2\times S_3\wr S_3$, of order \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \) |
Outer Automorphisms: | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Nilpotency class: | $-1$ |
Derived length: | $4$ |
The quotient is nonabelian and monomial (hence solvable).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \) |
$\operatorname{Aut}(H)$ | $\GL(3,5)$, of order \(1488000\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{3} \cdot 31 \) |
$W$ | $C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Related subgroups
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | $C_{15}^3.(C_4\times S_4)$ |