Properties

Label 324000.bm.2592.a1
Order $ 5^{3} $
Index $ 2^{5} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^3$
Order: \(125\)\(\medspace = 5^{3} \)
Index: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Exponent: \(5\)
Generators: $d^{6}e^{12}, f^{3}, e^{3}f^{9}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $5$-Sylow subgroup (hence a Hall subgroup), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_{15}^3.(C_4\times S_4)$
Order: \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_3^3:(C_4\times S_4)$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Automorphism Group: $C_2^2\times S_3\wr S_3$, of order \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $-1$
Derived length: $4$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $\GL(3,5)$, of order \(1488000\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{3} \cdot 31 \)
$W$$C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_{15}^3$
Normalizer:$C_{15}^3.(C_4\times S_4)$
Complements:$C_3^3:(C_4\times S_4)$
Minimal over-subgroups:$C_5^2\times C_{15}$$C_5^2\times C_{15}$$C_5^2\times C_{15}$$C_5\wr C_3$$C_5^3:C_2$$D_5\times C_5^2$$D_5\times C_5^2$$C_5^2:C_{10}$$C_5^2:C_{10}$
Maximal under-subgroups:$C_5^2$$C_5^2$$C_5^2$$C_5^2$$C_5^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^3.(C_4\times S_4)$