Properties

Label 324000.bm.360.bb1
Order $ 2^{2} \cdot 3^{2} \cdot 5^{2} $
Index $ 2^{3} \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}^2:C_2^2$
Order: \(900\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Index: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $acd^{15}e^{11}f^{10}, e^{3}f^{3}, d^{20}e^{10}, e^{10}f^{5}, b^{6}, d^{6}e^{12}f^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{15}^3.(C_4\times S_4)$
Order: \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $D_6\times F_5\wr C_2$, of order \(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \)
$W$$D_{15}:F_5$, of order \(600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_{15}^2.C_6.C_2^2$
Normal closure:$C_3^3:D_5\wr S_3$
Core:$C_1$
Minimal over-subgroups:$C_5^3:(C_6\times S_3)$$C_3\times C_5^2:(C_6\times S_3)$$C_{15}^2:D_6$$(C_{15}\times D_{15}):C_4$
Maximal under-subgroups:$C_{15}\times D_{15}$$C_{15}^2:C_2$$C_{15}\times D_{15}$$C_3\times D_5^2$$C_{15}:D_{10}$$C_{15}:D_6$$C_{15}:D_6$

Other information

Number of subgroups in this autjugacy class$60$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^3.(C_4\times S_4)$