Properties

Label 324000.bm.3.a1
Order $ 2^{5} \cdot 3^{3} \cdot 5^{3} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(108000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \)
Index: \(3\)
Exponent: not computed
Generators: $d^{6}e^{9}f^{9}, f^{3}, f^{10}, b^{3}, d^{20}f^{5}, b^{6}, e^{10}f^{10}, a, cd^{27}e^{11}f^{13}, d^{15}e^{2}f^{10}, e^{3}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is maximal, nonabelian, and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_{15}^3.(C_4\times S_4)$
Order: \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(108000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_{15}^3.C_4^2.C_2$
Normal closure:$C_{15}^3.(C_4\times S_4)$
Core:$C_{15}^3.C_4.C_2^2$
Minimal over-subgroups:$C_{15}^3.(C_4\times S_4)$
Maximal under-subgroups:$C_{15}^3.C_4.C_2^2$$C_{15}^3.C_2.C_2^3$$C_5^3.(C_6\times S_3^2).C_2$$C_{15}^3.C_4.C_2^2$$C_{15}^3.C_4^2$$C_{15}^3.C_2.D_4$$C_{15}^3.C_2.D_4$$C_5^3.(C_4\times S_3\wr C_2)$$(C_3\times C_{15}^2).C_4^2.C_2$$C_5^3.C_6.C_4.C_2^2$$S_3^2:(S_3\times F_5)$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^3.(C_4\times S_4)$