Properties

Label 324000.bm.1440.be1
Order $ 3^{2} \cdot 5^{2} $
Index $ 2^{5} \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}^2$
Order: \(225\)\(\medspace = 3^{2} \cdot 5^{2} \)
Index: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $e^{10}f^{5}, d^{6}e^{12}f^{3}, e^{3}f^{3}, d^{20}f^{10}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.

Ambient group ($G$) information

Description: $C_{15}^3.(C_4\times S_4)$
Order: \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $\GL(2,3)\times \GL(2,5)$, of order \(23040\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \)
$W$$C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_{15}^3$
Normalizer:$C_{15}\wr S_3:C_4$
Normal closure:$C_{15}^3$
Core:$C_1$
Minimal over-subgroups:$C_5\times C_{15}^2$$C_3\times C_{15}^2$$C_{15}^2:C_3$$C_{15}^2.C_3$$C_{15}\times D_{15}$$C_{15}^2:C_2$$C_{15}\times D_{15}$
Maximal under-subgroups:$C_5\times C_{15}$$C_5\times C_{15}$$C_3\times C_{15}$$C_3\times C_{15}$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^3.(C_4\times S_4)$