Properties

Label 324000.bm.12.j1
Order $ 2^{3} \cdot 3^{3} \cdot 5^{3} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(27000\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{3} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: not computed
Generators: $f^{3}, e^{3}f^{6}, d^{15}e^{8}f^{7}, f^{10}, b^{6}d^{3}e^{10}f^{9}, d^{6}e^{3}f^{6}, ab^{9}de^{13}f^{3}, d^{20}e^{10}, e^{10}f^{5}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian, metabelian (hence solvable), and an A-group. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_{15}^3.(C_4\times S_4)$
Order: \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(36000\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_{15}^3.C_4^2.C_2$
Normal closure:$(C_{15}^3.A_4):C_4$
Core:$C_3^3\times C_5^2:D_5$
Minimal over-subgroups:$C_5^3.(C_6\times S_3^2).C_2$$C_{15}^3.C_4^2$$C_{15}^3.C_2.D_4$
Maximal under-subgroups:$C_{15}^3.C_2^2$$C_5\times C_5^2:(C_3\times C_3:S_3.C_2)$$C_5^3.C_3:S_3.C_2^2$$C_{15}^2.C_{12}.C_2$$C_{15}^2.C_{12}.C_2$$C_3\times C_5^3:(C_2\times C_4)$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^3.(C_4\times S_4)$