Subgroup ($H$) information
| Description: | not computed | 
| Order: | \(27000\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{3} \) | 
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Exponent: | not computed | 
| Generators: | $f^{3}, e^{3}f^{6}, d^{15}e^{8}f^{7}, f^{10}, b^{6}d^{3}e^{10}f^{9}, d^{6}e^{3}f^{6}, ab^{9}de^{13}f^{3}, d^{20}e^{10}, e^{10}f^{5}$ | 
| Derived length: | not computed | 
The subgroup is nonabelian, metabelian (hence solvable), and an A-group. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.
Ambient group ($G$) information
| Description: | $C_{15}^3.(C_4\times S_4)$ | 
| Order: | \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \) | 
| Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) | 
| Derived length: | $4$ | 
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \) | 
| $\operatorname{Aut}(H)$ | not computed | 
| $\card{W}$ | \(36000\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{3} \) | 
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $3$ | 
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | not computed | 
| Projective image | $C_{15}^3.(C_4\times S_4)$ | 
