Properties

Label 324000.bm.108.k1
Order $ 2^{3} \cdot 3 \cdot 5^{3} $
Index $ 2^{2} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^3:(C_4\times S_3)$
Order: \(3000\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{3} \)
Index: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $acd^{15}e^{11}f^{10}, d^{6}e^{3}f^{9}, b^{6}, b^{4}cd^{3}e^{5}f^{13}, b^{3}e^{10}, e^{3}f^{3}, f^{3}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $C_{15}^3.(C_4\times S_4)$
Order: \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $C_5^3:(S_3\times C_4^2)$, of order \(12000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{3} \)
$W$$C_5^3:(C_4\times S_3)$, of order \(3000\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_5^3:(C_4\times S_3)$
Normal closure:$C_{15}^3.(C_4\times S_4)$
Core:$C_5^3:C_2$
Minimal over-subgroups:$D_5^3.D_6$$C_5^3:C_6.D_6$
Maximal under-subgroups:$C_5^3:D_6$$C_5^3:C_{12}$$C_5\wr C_3:C_4$$C_5^3:(C_2\times C_4)$$C_5^2:(C_4\times S_3)$$S_3\times F_5$

Other information

Number of subgroups in this autjugacy class$108$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^3.(C_4\times S_4)$