Subgroup ($H$) information
Description: | $C_3:C_{36}$ |
Order: | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
Index: | \(3\) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Generators: |
$a^{9}, b^{3}, a^{4}, a^{18}, a^{12}$
|
Derived length: | $2$ |
The subgroup is maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Ambient group ($G$) information
Description: | $C_9:C_{36}$ |
Order: | \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $2$ |
The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_9:C_6^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) |
$\operatorname{Aut}(H)$ | $C_6\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
$\operatorname{res}(S)$ | $C_6\times S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(3\) |
$W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Centralizer: | $C_{18}$ | ||
Normalizer: | $C_3:C_{36}$ | ||
Normal closure: | $C_9:C_{36}$ | ||
Core: | $C_3\times C_{18}$ | ||
Minimal over-subgroups: | $C_9:C_{36}$ | ||
Maximal under-subgroups: | $C_3\times C_{18}$ | $C_3:C_{12}$ | $C_{36}$ |
Other information
Number of subgroups in this conjugacy class | $3$ |
Möbius function | $-1$ |
Projective image | $C_9:C_6$ |