Properties

Label 324.9.3.b1.a1
Order $ 2^{2} \cdot 3^{3} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:C_{36}$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(3\)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $a^{9}, b^{3}, a^{4}, a^{18}, a^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_9:C_{36}$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_9:C_6^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_6\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_6\times S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_{18}$
Normalizer:$C_3:C_{36}$
Normal closure:$C_9:C_{36}$
Core:$C_3\times C_{18}$
Minimal over-subgroups:$C_9:C_{36}$
Maximal under-subgroups:$C_3\times C_{18}$$C_3:C_{12}$$C_{36}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$C_9:C_6$