Properties

Label 324.148.1.a1.a1
Order $ 2^{2} \cdot 3^{4} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_3\times C_{18}):S_3$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Index: $1$
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $a, d^{6}, cd^{12}, d^{9}, d^{2}, b$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, and supersolvable (hence monomial).

Ambient group ($G$) information

Description: $(C_3\times C_{18}):S_3$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6\times C_3^2:\GL(2,3)$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_6\times C_3^2:\GL(2,3)$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$W$$C_3:S_3$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)

Related subgroups

Centralizer:$C_{18}$
Normalizer:$(C_3\times C_{18}):S_3$
Complements:$C_1$
Maximal under-subgroups:$C_6.C_3^3$$\He_3.C_6$$\He_3.C_6$$C_3^2:D_6$$S_3\times C_{18}$$S_3\times C_{18}$$S_3\times C_{18}$$S_3\times C_{18}$

Other information

Möbius function$1$
Projective image$C_3:S_3$