Subgroup ($H$) information
Description: | $C_2^6$ |
Order: | \(64\)\(\medspace = 2^{6} \) |
Index: | \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Exponent: | \(2\) |
Generators: |
$\langle(1,8)(2,9), (3,10)(4,11), (2,9)(7,14), (5,12)(7,14), (6,13)(7,14), (4,11)(7,14)\rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the radical, the socle, abelian (hence metabelian and an A-group), a $p$-group (hence elementary and hyperelementary), and rational. Whether it is a direct factor or a semidirect factor has not been computed.
Ambient group ($G$) information
Description: | $C_2^6.S_7$ |
Order: | \(322560\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Exponent: | \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
Derived length: | $1$ |
The ambient group is nonabelian, nonsolvable, and rational.
Quotient group ($Q$) structure
Description: | $S_7$ |
Order: | \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Exponent: | \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \) |
Automorphism Group: | $S_7$, of order \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Outer Automorphisms: | $C_1$, of order $1$ |
Nilpotency class: | $-1$ |
Derived length: | $1$ |
The quotient is nonabelian, almost simple, nonsolvable, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^6.S_7$, of order \(322560\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \cdot 7 \) |
$\operatorname{Aut}(H)$ | $\GL(6,2)$, of order \(20158709760\)\(\medspace = 2^{15} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 31 \) |
$W$ | $S_7$, of order \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Related subgroups
Centralizer: | $C_2^6$ |
Normalizer: | $C_2^6.S_7$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | $C_2^6.S_7$ |