Properties

Label 322560.b.5040.A
Order $ 2^{6} $
Index $ 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^6$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
Exponent: \(2\)
Generators: $\langle(1,8)(2,9), (3,10)(4,11), (2,9)(7,14), (5,12)(7,14), (6,13)(7,14), (4,11)(7,14)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the radical, the socle, abelian (hence metabelian and an A-group), a $p$-group (hence elementary and hyperelementary), and rational. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_2^6.S_7$
Order: \(322560\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \cdot 7 \)
Exponent: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian, nonsolvable, and rational.

Quotient group ($Q$) structure

Description: $S_7$
Order: \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Automorphism Group: $S_7$, of order \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $1$

The quotient is nonabelian, almost simple, nonsolvable, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.S_7$, of order \(322560\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $\GL(6,2)$, of order \(20158709760\)\(\medspace = 2^{15} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 31 \)
$W$$S_7$, of order \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)

Related subgroups

Centralizer:$C_2^6$
Normalizer:$C_2^6.S_7$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^6.S_7$