Properties

Label 32256.h.42.F
Order $ 2^{8} \cdot 3 $
Index $ 2 \cdot 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}.D_4^2$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Index: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $\left(\begin{array}{rrrr} 2 & 0 & 5 & 0 \\ 3 & 5 & 0 & 2 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 3 & 2 \end{array}\right), \left(\begin{array}{rrrr} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 6 \end{array}\right), \left(\begin{array}{rrrr} 5 & 5 & 4 & 2 \\ 3 & 2 & 3 & 4 \\ 1 & 0 & 4 & 2 \\ 2 & 1 & 4 & 1 \end{array}\right), \left(\begin{array}{rrrr} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{array}\right), \left(\begin{array}{rrrr} 0 & 4 & 6 & 3 \\ 6 & 1 & 6 & 6 \\ 2 & 3 & 6 & 3 \\ 4 & 2 & 1 & 0 \end{array}\right), \left(\begin{array}{rrrr} 2 & 5 & 4 & 2 \\ 3 & 6 & 3 & 4 \\ 1 & 0 & 1 & 2 \\ 2 & 1 & 4 & 5 \end{array}\right), \left(\begin{array}{rrrr} 0 & 0 & 4 & 1 \\ 6 & 2 & 1 & 6 \\ 4 & 6 & 6 & 1 \\ 1 & 1 & 3 & 6 \end{array}\right), \left(\begin{array}{rrrr} 0 & 0 & 0 & 2 \\ 0 & 4 & 3 & 0 \\ 0 & 5 & 3 & 0 \\ 5 & 0 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrr} 1 & 4 & 6 & 3 \\ 1 & 0 & 1 & 6 \\ 5 & 0 & 3 & 3 \\ 3 & 5 & 6 & 2 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $\GL(2,7):D_8$
Order: \(32256\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 7 \)
Exponent: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_4).C_2^5.\SO(3,7)$
$\operatorname{Aut}(H)$ $C_4^3.C_2^6$
$W$$D_8^2$, of order \(256\)\(\medspace = 2^{8} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_6.D_8^2$
Normal closure:$C_3\times \SL(2,7).D_8$
Core:$C_3\times \SD_{32}$
Minimal over-subgroups:$C_3\times \GL(2,3).D_8$$C_6.D_8^2$
Maximal under-subgroups:$D_{16}:C_{12}$$C_{24}.D_8$$C_3\times D_4.D_8$$C_{48}.C_2^3$$C_6.D_4^2$$C_{24}.D_8$$C_{48}:D_4$$C_{48}.D_4$$C_3\times D_4.D_8$$C_6.D_4^2$$D_8.C_{24}$$D_{16}:D_4$

Other information

Number of subgroups in this autjugacy class$21$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed