Properties

Label 32256.h.126.F
Order $ 2^{8} $
Index $ 2 \cdot 3^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{16}:D_4$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $\left(\begin{array}{rrrr} 6 & 6 & 2 & 1 \\ 5 & 1 & 5 & 2 \\ 4 & 0 & 2 & 1 \\ 1 & 4 & 2 & 4 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 6 & 0 \\ 5 & 6 & 0 & 1 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 5 & 1 \end{array}\right), \left(\begin{array}{rrrr} 0 & 0 & 0 & 1 \\ 0 & 2 & 5 & 0 \\ 0 & 6 & 5 & 0 \\ 6 & 0 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrr} 0 & 0 & 1 & 2 \\ 5 & 4 & 2 & 5 \\ 1 & 5 & 5 & 2 \\ 2 & 2 & 6 & 5 \end{array}\right), \left(\begin{array}{rrrr} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 6 \end{array}\right), \left(\begin{array}{rrrr} 0 & 4 & 6 & 3 \\ 6 & 1 & 6 & 6 \\ 2 & 3 & 6 & 3 \\ 4 & 2 & 1 & 0 \end{array}\right), \left(\begin{array}{rrrr} 2 & 5 & 4 & 2 \\ 3 & 6 & 3 & 4 \\ 1 & 0 & 1 & 2 \\ 2 & 1 & 4 & 5 \end{array}\right), \left(\begin{array}{rrrr} 1 & 4 & 6 & 3 \\ 1 & 0 & 1 & 6 \\ 5 & 0 & 3 & 3 \\ 3 & 5 & 6 & 2 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $\GL(2,7):D_8$
Order: \(32256\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 7 \)
Exponent: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_4).C_2^5.\SO(3,7)$
$\operatorname{Aut}(H)$ $C_4^2.C_2^3.C_2^4$
$W$$D_8^2$, of order \(256\)\(\medspace = 2^{8} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_6.D_8^2$
Normal closure:$\SL(2,7).D_8$
Core:$\SD_{32}$
Minimal over-subgroups:$C_{12}.D_4^2$$\GL(2,3).D_8$$D_{16}:D_8$
Maximal under-subgroups:$D_{16}:C_4$$D_8:D_4$$D_4.D_8$$D_{16}:C_2^2$$C_2.D_4^2$$C_8.D_8$$C_{16}:D_4$$C_{16}.D_4$$D_4.D_8$$D_8:D_4$$C_{16}.D_4$

Other information

Number of subgroups in this autjugacy class$21$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed