Properties

Label 320.105.5.a1.a1
Order $ 2^{6} $
Index $ 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4.D_8$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(5\)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a, b$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{20}.D_8$
Order: \(320\)\(\medspace = 2^{6} \cdot 5 \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:(C_2\times C_4\times C_2^2.C_2^5)$
$\operatorname{Aut}(H)$ $C_2^2\times D_4^2$, of order \(256\)\(\medspace = 2^{8} \)
$\operatorname{res}(S)$$C_2^2\times D_4^2$, of order \(256\)\(\medspace = 2^{8} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^2:C_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_4.D_8$
Normal closure:$C_{20}.D_8$
Core:$C_4:Q_8$
Minimal over-subgroups:$C_{20}.D_8$
Maximal under-subgroups:$C_4:Q_8$$C_4:C_8$$C_4:C_8$

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$-1$
Projective image$C_{10}.D_4$