Properties

Label 319440.x.2._.C
Order $ 2^{3} \cdot 3 \cdot 5 \cdot 11^{3} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_{11}^3:D_{12}$
Order: \(159720\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11^{3} \)
Index: \(2\)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 3 & 1 & 4 & 10 \\ 6 & 0 & 4 & 4 \\ 1 & 0 & 2 & 10 \\ 3 & 1 & 5 & 10 \end{array}\right), \left(\begin{array}{rrrr} 8 & 7 & 10 & 10 \\ 7 & 8 & 8 & 9 \\ 10 & 6 & 9 & 8 \\ 9 & 3 & 1 & 6 \end{array}\right), \left(\begin{array}{rrrr} 8 & 2 & 4 & 4 \\ 7 & 2 & 10 & 2 \\ 7 & 10 & 8 & 1 \\ 7 & 3 & 8 & 4 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 6 & 10 & 0 & 0 \\ 1 & 0 & 10 & 0 \\ 0 & 10 & 6 & 1 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 10 & 9 & 8 & 0 \\ 4 & 4 & 0 & 0 \\ 4 & 4 & 1 & 10 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 4 & 5 & 1 & 0 \\ 6 & 6 & 8 & 0 \\ 6 & 6 & 7 & 1 \end{array}\right), \left(\begin{array}{rrrr} 1 & 4 & 8 & 4 \\ 8 & 6 & 7 & 8 \\ 1 & 8 & 7 & 7 \\ 1 & 1 & 3 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, maximal, nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.

Ambient group ($G$) information

Description: $C_{11}^3:(C_{10}\times D_{12})$
Order: \(319440\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11^{3} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(51110400\)\(\medspace = 2^{9} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
$\operatorname{Aut}(H)$ Group of order \(12777600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed