Properties

Label 319440.x
Order \( 2^{4} \cdot 3 \cdot 5 \cdot 11^{3} \)
Exponent \( 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \cdot 5 \)
$\card{Z(G)}$ 10
$\card{\Aut(G)}$ \( 2^{9} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
$\card{\mathrm{Out}(G)}$ \( 2^{6} \cdot 5^{2} \)
Perm deg. $53$
Trans deg. $660$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 53 | (1,2,8,12,23,32)(3,9,21)(4,14,22,6,11,26)(5,15,28,17,10,25)(7,19,20,18,27,31)(13,24,30,16,29,33)(38,39,40,42,41)(43,44)(45,49)(46,53)(48,52)(50,51), (38,40,41,39,42), (1,3,12,4,5,16,18,7,13,17,6)(2,9,23,14,15,29,27,19,24,10,11)(38,41,42,40,39)(43,45,48,46,50,47,51,53,52,49,44), (1,4)(2,8,9,21,23,32,14,22,15,28,29,33,27,31,19,20,24,30,10,25,11,26)(3,12)(5,6)(13,18)(16,17)(36,37)(38,41,42,40,39)(43,46)(44,50)(45,48)(47,49)(51,52), (34,35)(36,37)(38,40,41,39,42), (1,5)(2,10)(3,4)(6,16)(7,13)(8,20)(9,24)(14,27)(15,29)(17,18)(19,23)(21,31)(22,28)(26,30)(32,33)(34,36,35,37)(38,39,40,42,41)(43,47,44,50,49,46,52,48,53,45,51), (1,6,17,13,7,18,16,5,4,12,3)(8,21,32,22,28,33,31,20,30,25,26)(38,42,39,41,40)(43,48,50,51,52,44,45,46,47,53,49), (2,9)(3,6)(4,13)(5,7)(8,22)(10,14)(11,23)(12,17)(15,24)(16,18)(19,29)(21,32)(25,33)(26,28)(30,31)(38,40,41,39,42)(43,49)(45,52)(46,51)(47,50)(48,53), (1,7,4,6,18,12,17,16,3,13,5)(2,11,10,24,19,27,29,15,14,23,9)(8,22,31,25,21,28,20,26,32,33,30)(34,35)(36,37)(38,39,40,42,41)(43,48,50,51,52,44,45,46,47,53,49) >;
 
Copy content gap:G := Group( (1,2,8,12,23,32)(3,9,21)(4,14,22,6,11,26)(5,15,28,17,10,25)(7,19,20,18,27,31)(13,24,30,16,29,33)(38,39,40,42,41)(43,44)(45,49)(46,53)(48,52)(50,51), (38,40,41,39,42), (1,3,12,4,5,16,18,7,13,17,6)(2,9,23,14,15,29,27,19,24,10,11)(38,41,42,40,39)(43,45,48,46,50,47,51,53,52,49,44), (1,4)(2,8,9,21,23,32,14,22,15,28,29,33,27,31,19,20,24,30,10,25,11,26)(3,12)(5,6)(13,18)(16,17)(36,37)(38,41,42,40,39)(43,46)(44,50)(45,48)(47,49)(51,52), (34,35)(36,37)(38,40,41,39,42), (1,5)(2,10)(3,4)(6,16)(7,13)(8,20)(9,24)(14,27)(15,29)(17,18)(19,23)(21,31)(22,28)(26,30)(32,33)(34,36,35,37)(38,39,40,42,41)(43,47,44,50,49,46,52,48,53,45,51), (1,6,17,13,7,18,16,5,4,12,3)(8,21,32,22,28,33,31,20,30,25,26)(38,42,39,41,40)(43,48,50,51,52,44,45,46,47,53,49), (2,9)(3,6)(4,13)(5,7)(8,22)(10,14)(11,23)(12,17)(15,24)(16,18)(19,29)(21,32)(25,33)(26,28)(30,31)(38,40,41,39,42)(43,49)(45,52)(46,51)(47,50)(48,53), (1,7,4,6,18,12,17,16,3,13,5)(2,11,10,24,19,27,29,15,14,23,9)(8,22,31,25,21,28,20,26,32,33,30)(34,35)(36,37)(38,39,40,42,41)(43,48,50,51,52,44,45,46,47,53,49) );
 
Copy content sage:G = PermutationGroup(['(1,2,8,12,23,32)(3,9,21)(4,14,22,6,11,26)(5,15,28,17,10,25)(7,19,20,18,27,31)(13,24,30,16,29,33)(38,39,40,42,41)(43,44)(45,49)(46,53)(48,52)(50,51)', '(38,40,41,39,42)', '(1,3,12,4,5,16,18,7,13,17,6)(2,9,23,14,15,29,27,19,24,10,11)(38,41,42,40,39)(43,45,48,46,50,47,51,53,52,49,44)', '(1,4)(2,8,9,21,23,32,14,22,15,28,29,33,27,31,19,20,24,30,10,25,11,26)(3,12)(5,6)(13,18)(16,17)(36,37)(38,41,42,40,39)(43,46)(44,50)(45,48)(47,49)(51,52)', '(34,35)(36,37)(38,40,41,39,42)', '(1,5)(2,10)(3,4)(6,16)(7,13)(8,20)(9,24)(14,27)(15,29)(17,18)(19,23)(21,31)(22,28)(26,30)(32,33)(34,36,35,37)(38,39,40,42,41)(43,47,44,50,49,46,52,48,53,45,51)', '(1,6,17,13,7,18,16,5,4,12,3)(8,21,32,22,28,33,31,20,30,25,26)(38,42,39,41,40)(43,48,50,51,52,44,45,46,47,53,49)', '(2,9)(3,6)(4,13)(5,7)(8,22)(10,14)(11,23)(12,17)(15,24)(16,18)(19,29)(21,32)(25,33)(26,28)(30,31)(38,40,41,39,42)(43,49)(45,52)(46,51)(47,50)(48,53)', '(1,7,4,6,18,12,17,16,3,13,5)(2,11,10,24,19,27,29,15,14,23,9)(8,22,31,25,21,28,20,26,32,33,30)(34,35)(36,37)(38,39,40,42,41)(43,48,50,51,52,44,45,46,47,53,49)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1052856233766732433237675855687326067142310701469027458468355603583007084539484946945180735498283858164987330433596180720808438545138753535541030900199,319440)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.9;
 

Group information

Description:$C_{11}^3:(C_{10}\times D_{12})$
Order: \(319440\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11^{3} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(51110400\)\(\medspace = 2^{9} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 4, $C_3$, $C_5$, $C_{11}$ x 3
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 10 11 12 15 20 22 30 33 44 55 60 66 110 132 165 220 330 660
Elements 1 4247 242 264 4 5566 16988 1330 5808 968 1056 31690 22264 2420 5060 5320 23232 2420 126760 4840 9680 20240 9680 19360 319440
Conjugacy classes   1 7 1 2 4 3 28 95 4 4 8 225 12 5 25 380 16 5 900 10 20 100 20 40 1915
Divisions 1 7 1 2 1 3 7 19 2 1 2 45 3 1 4 19 2 1 45 1 1 4 1 1 174
Autjugacy classes 1 4 1 2 1 2 4 5 2 1 2 9 2 1 3 5 2 1 9 1 1 3 1 1 64

Minimal presentations

Permutation degree:$53$
Transitive degree:$660$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e \mid a^{10}=b^{22}=c^{12}=d^{11}=e^{11}=[b,d]=[d,e]= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([9, -2, -5, -2, -11, -2, -2, -3, -11, 11, 18, 3926072, 74, 7203, 2148304, 1068232, 83686, 130, 6866645, 539375, 143780, 158, 10699926, 826080, 992409, 1900807, 90763, 44980, 5893, 23522408, 2352266, 73916, 31643, 13670]); a,b,c,d,e := Explode([G.1, G.3, G.5, G.8, G.9]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "c4", "d", "e"]);
 
Copy content gap:G := PcGroupCode(1052856233766732433237675855687326067142310701469027458468355603583007084539484946945180735498283858164987330433596180720808438545138753535541030900199,319440); a := G.1; b := G.3; c := G.5; d := G.8; e := G.9;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1052856233766732433237675855687326067142310701469027458468355603583007084539484946945180735498283858164987330433596180720808438545138753535541030900199,319440)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.9;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1052856233766732433237675855687326067142310701469027458468355603583007084539484946945180735498283858164987330433596180720808438545138753535541030900199,319440)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.9;
 
Permutation group:Degree $53$ $\langle(1,2,8,12,23,32)(3,9,21)(4,14,22,6,11,26)(5,15,28,17,10,25)(7,19,20,18,27,31) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 53 | (1,2,8,12,23,32)(3,9,21)(4,14,22,6,11,26)(5,15,28,17,10,25)(7,19,20,18,27,31)(13,24,30,16,29,33)(38,39,40,42,41)(43,44)(45,49)(46,53)(48,52)(50,51), (38,40,41,39,42), (1,3,12,4,5,16,18,7,13,17,6)(2,9,23,14,15,29,27,19,24,10,11)(38,41,42,40,39)(43,45,48,46,50,47,51,53,52,49,44), (1,4)(2,8,9,21,23,32,14,22,15,28,29,33,27,31,19,20,24,30,10,25,11,26)(3,12)(5,6)(13,18)(16,17)(36,37)(38,41,42,40,39)(43,46)(44,50)(45,48)(47,49)(51,52), (34,35)(36,37)(38,40,41,39,42), (1,5)(2,10)(3,4)(6,16)(7,13)(8,20)(9,24)(14,27)(15,29)(17,18)(19,23)(21,31)(22,28)(26,30)(32,33)(34,36,35,37)(38,39,40,42,41)(43,47,44,50,49,46,52,48,53,45,51), (1,6,17,13,7,18,16,5,4,12,3)(8,21,32,22,28,33,31,20,30,25,26)(38,42,39,41,40)(43,48,50,51,52,44,45,46,47,53,49), (2,9)(3,6)(4,13)(5,7)(8,22)(10,14)(11,23)(12,17)(15,24)(16,18)(19,29)(21,32)(25,33)(26,28)(30,31)(38,40,41,39,42)(43,49)(45,52)(46,51)(47,50)(48,53), (1,7,4,6,18,12,17,16,3,13,5)(2,11,10,24,19,27,29,15,14,23,9)(8,22,31,25,21,28,20,26,32,33,30)(34,35)(36,37)(38,39,40,42,41)(43,48,50,51,52,44,45,46,47,53,49) >;
 
Copy content gap:G := Group( (1,2,8,12,23,32)(3,9,21)(4,14,22,6,11,26)(5,15,28,17,10,25)(7,19,20,18,27,31)(13,24,30,16,29,33)(38,39,40,42,41)(43,44)(45,49)(46,53)(48,52)(50,51), (38,40,41,39,42), (1,3,12,4,5,16,18,7,13,17,6)(2,9,23,14,15,29,27,19,24,10,11)(38,41,42,40,39)(43,45,48,46,50,47,51,53,52,49,44), (1,4)(2,8,9,21,23,32,14,22,15,28,29,33,27,31,19,20,24,30,10,25,11,26)(3,12)(5,6)(13,18)(16,17)(36,37)(38,41,42,40,39)(43,46)(44,50)(45,48)(47,49)(51,52), (34,35)(36,37)(38,40,41,39,42), (1,5)(2,10)(3,4)(6,16)(7,13)(8,20)(9,24)(14,27)(15,29)(17,18)(19,23)(21,31)(22,28)(26,30)(32,33)(34,36,35,37)(38,39,40,42,41)(43,47,44,50,49,46,52,48,53,45,51), (1,6,17,13,7,18,16,5,4,12,3)(8,21,32,22,28,33,31,20,30,25,26)(38,42,39,41,40)(43,48,50,51,52,44,45,46,47,53,49), (2,9)(3,6)(4,13)(5,7)(8,22)(10,14)(11,23)(12,17)(15,24)(16,18)(19,29)(21,32)(25,33)(26,28)(30,31)(38,40,41,39,42)(43,49)(45,52)(46,51)(47,50)(48,53), (1,7,4,6,18,12,17,16,3,13,5)(2,11,10,24,19,27,29,15,14,23,9)(8,22,31,25,21,28,20,26,32,33,30)(34,35)(36,37)(38,39,40,42,41)(43,48,50,51,52,44,45,46,47,53,49) );
 
Copy content sage:G = PermutationGroup(['(1,2,8,12,23,32)(3,9,21)(4,14,22,6,11,26)(5,15,28,17,10,25)(7,19,20,18,27,31)(13,24,30,16,29,33)(38,39,40,42,41)(43,44)(45,49)(46,53)(48,52)(50,51)', '(38,40,41,39,42)', '(1,3,12,4,5,16,18,7,13,17,6)(2,9,23,14,15,29,27,19,24,10,11)(38,41,42,40,39)(43,45,48,46,50,47,51,53,52,49,44)', '(1,4)(2,8,9,21,23,32,14,22,15,28,29,33,27,31,19,20,24,30,10,25,11,26)(3,12)(5,6)(13,18)(16,17)(36,37)(38,41,42,40,39)(43,46)(44,50)(45,48)(47,49)(51,52)', '(34,35)(36,37)(38,40,41,39,42)', '(1,5)(2,10)(3,4)(6,16)(7,13)(8,20)(9,24)(14,27)(15,29)(17,18)(19,23)(21,31)(22,28)(26,30)(32,33)(34,36,35,37)(38,39,40,42,41)(43,47,44,50,49,46,52,48,53,45,51)', '(1,6,17,13,7,18,16,5,4,12,3)(8,21,32,22,28,33,31,20,30,25,26)(38,42,39,41,40)(43,48,50,51,52,44,45,46,47,53,49)', '(2,9)(3,6)(4,13)(5,7)(8,22)(10,14)(11,23)(12,17)(15,24)(16,18)(19,29)(21,32)(25,33)(26,28)(30,31)(38,40,41,39,42)(43,49)(45,52)(46,51)(47,50)(48,53)', '(1,7,4,6,18,12,17,16,3,13,5)(2,11,10,24,19,27,29,15,14,23,9)(8,22,31,25,21,28,20,26,32,33,30)(34,35)(36,37)(38,39,40,42,41)(43,48,50,51,52,44,45,46,47,53,49)'])
 
Matrix group:$\left\langle \left(\begin{array}{rrrr} 3 & 0 & 0 & 0 \\ 5 & 8 & 4 & 0 \\ 0 & 0 & 3 & 0 \\ 6 & 0 & 6 & 8 \end{array}\right), \left(\begin{array}{rrrr} 4 & 0 & 0 & 0 \\ 5 & 9 & 4 & 0 \\ 2 & 2 & 10 & 0 \\ 2 & 2 & 6 & 4 \end{array}\right), \left(\begin{array}{rrrr} 8 & 2 & 4 & 4 \\ 7 & 2 & 10 & 2 \\ 5 & 2 & 1 & 6 \\ 10 & 2 & 9 & 0 \end{array}\right), \left(\begin{array}{rrrr} 3 & 2 & 9 & 8 \\ 10 & 6 & 4 & 9 \\ 6 & 4 & 1 & 9 \\ 0 & 6 & 1 & 4 \end{array}\right), \left(\begin{array}{rrrr} 10 & 2 & 2 & 0 \\ 8 & 3 & 7 & 8 \\ 9 & 1 & 10 & 7 \\ 9 & 7 & 10 & 10 \end{array}\right), \left(\begin{array}{rrrr} 3 & 1 & 0 & 9 \\ 9 & 2 & 4 & 0 \\ 9 & 10 & 8 & 6 \\ 2 & 6 & 10 & 9 \end{array}\right), \left(\begin{array}{rrrr} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{array}\right), \left(\begin{array}{rrrr} 8 & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 \\ 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 8 \end{array}\right), \left(\begin{array}{rrrr} 0 & 10 & 3 & 5 \\ 10 & 8 & 3 & 3 \\ 6 & 7 & 4 & 1 \\ 0 & 6 & 1 & 1 \end{array}\right) \right\rangle \subseteq \GL_{4}(\F_{11})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 4, GF(11) | [[3, 0, 0, 0, 5, 8, 4, 0, 0, 0, 3, 0, 6, 0, 6, 8], [4, 0, 0, 0, 5, 9, 4, 0, 2, 2, 10, 0, 2, 2, 6, 4], [8, 2, 4, 4, 7, 2, 10, 2, 5, 2, 1, 6, 10, 2, 9, 0], [3, 2, 9, 8, 10, 6, 4, 9, 6, 4, 1, 9, 0, 6, 1, 4], [10, 2, 2, 0, 8, 3, 7, 8, 9, 1, 10, 7, 9, 7, 10, 10], [3, 1, 0, 9, 9, 2, 4, 0, 9, 10, 8, 6, 2, 6, 10, 9], [3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3], [8, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8], [0, 10, 3, 5, 10, 8, 3, 3, 6, 7, 4, 1, 0, 6, 1, 1]] >;
 
Copy content gap:G := Group([[[ Z(11)^8, 0*Z(11), 0*Z(11), 0*Z(11) ], [ Z(11)^4, Z(11)^3, Z(11)^2, 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^8, 0*Z(11) ], [ Z(11)^9, 0*Z(11), Z(11)^9, Z(11)^3 ]], [[ Z(11)^2, 0*Z(11), 0*Z(11), 0*Z(11) ], [ Z(11)^4, Z(11)^6, Z(11)^2, 0*Z(11) ], [ Z(11), Z(11), Z(11)^5, 0*Z(11) ], [ Z(11), Z(11), Z(11)^9, Z(11)^2 ]], [[ Z(11)^3, Z(11), Z(11)^2, Z(11)^2 ], [ Z(11)^7, Z(11), Z(11)^5, Z(11) ], [ Z(11)^4, Z(11), Z(11)^0, Z(11)^9 ], [ Z(11)^5, Z(11), Z(11)^6, 0*Z(11) ]], [[ Z(11)^8, Z(11), Z(11)^6, Z(11)^3 ], [ Z(11)^5, Z(11)^9, Z(11)^2, Z(11)^6 ], [ Z(11)^9, Z(11)^2, Z(11)^0, Z(11)^6 ], [ 0*Z(11), Z(11)^9, Z(11)^0, Z(11)^2 ]], [[ Z(11)^5, Z(11), Z(11), 0*Z(11) ], [ Z(11)^3, Z(11)^8, Z(11)^7, Z(11)^3 ], [ Z(11)^6, Z(11)^0, Z(11)^5, Z(11)^7 ], [ Z(11)^6, Z(11)^7, Z(11)^5, Z(11)^5 ]], [[ Z(11)^8, Z(11)^0, 0*Z(11), Z(11)^6 ], [ Z(11)^6, Z(11), Z(11)^2, 0*Z(11) ], [ Z(11)^6, Z(11)^5, Z(11)^3, Z(11)^9 ], [ Z(11), Z(11)^9, Z(11)^5, Z(11)^6 ]], [[ Z(11)^8, 0*Z(11), 0*Z(11), 0*Z(11) ], [ 0*Z(11), Z(11)^8, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^8, 0*Z(11) ], [ 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^8 ]], [[ Z(11)^3, 0*Z(11), 0*Z(11), 0*Z(11) ], [ 0*Z(11), Z(11)^3, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^3, 0*Z(11) ], [ 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^3 ]], [[ 0*Z(11), Z(11)^5, Z(11)^8, Z(11)^4 ], [ Z(11)^5, Z(11)^3, Z(11)^8, Z(11)^8 ], [ Z(11)^9, Z(11)^7, Z(11)^2, Z(11)^0 ], [ 0*Z(11), Z(11)^9, Z(11)^0, Z(11)^0 ]]]);
 
Copy content sage:MS = MatrixSpace(GF(11), 4, 4) G = MatrixGroup([MS([[3, 0, 0, 0], [5, 8, 4, 0], [0, 0, 3, 0], [6, 0, 6, 8]]), MS([[4, 0, 0, 0], [5, 9, 4, 0], [2, 2, 10, 0], [2, 2, 6, 4]]), MS([[8, 2, 4, 4], [7, 2, 10, 2], [5, 2, 1, 6], [10, 2, 9, 0]]), MS([[3, 2, 9, 8], [10, 6, 4, 9], [6, 4, 1, 9], [0, 6, 1, 4]]), MS([[10, 2, 2, 0], [8, 3, 7, 8], [9, 1, 10, 7], [9, 7, 10, 10]]), MS([[3, 1, 0, 9], [9, 2, 4, 0], [9, 10, 8, 6], [2, 6, 10, 9]]), MS([[3, 0, 0, 0], [0, 3, 0, 0], [0, 0, 3, 0], [0, 0, 0, 3]]), MS([[8, 0, 0, 0], [0, 8, 0, 0], [0, 0, 8, 0], [0, 0, 0, 8]]), MS([[0, 10, 3, 5], [10, 8, 3, 3], [6, 7, 4, 1], [0, 6, 1, 1]])])
 
Direct product: not computed
Semidirect product: $C_{11}^3$ $\,\rtimes\,$ $(C_{10}\times D_{12})$ $(C_{11}\wr C_3)$ $\,\rtimes\,$ $(D_4\times C_{10})$ $(C_{11}^2:C_{165})$ $\,\rtimes\,$ $(C_2\times D_4)$ $(C_{11}^2\times C_{55})$ $\,\rtimes\,$ $(C_2\times D_{12})$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_{11}^3:C_{30})$ . $D_4$ (2) $(C_{110}.D_{11}^2)$ . $S_3$ $(C_{11}^3:D_{12})$ . $C_{10}$ (2) $(C_{11}^3:D_{12})$ . $C_{10}$ all 60

Elements of the group are displayed as matrices in $\GL_{4}(\F_{11})$.

Homology

Abelianization: $C_{2}^{2} \times C_{10} \simeq C_{2}^{3} \times C_{5}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{3}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 82 normal subgroups (54 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_{10}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_{11}^2:C_{66}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5$
11-Sylow subgroup: $P_{ 11 } \simeq$ $C_{11}^3$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 2 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $1915 \times 1915$ character table is not available for this group.

Rational character table

The $174 \times 174$ rational character table is not available for this group.