| Presentation: |
${\langle a, b, c, d, e \mid a^{10}=b^{22}=c^{12}=d^{11}=e^{11}=[b,d]=[d,e]= \!\cdots\! \rangle}$
|
magma:G := PCGroup([9, -2, -5, -2, -11, -2, -2, -3, -11, 11, 18, 3926072, 74, 7203, 2148304, 1068232, 83686, 130, 6866645, 539375, 143780, 158, 10699926, 826080, 992409, 1900807, 90763, 44980, 5893, 23522408, 2352266, 73916, 31643, 13670]); a,b,c,d,e := Explode([G.1, G.3, G.5, G.8, G.9]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "c4", "d", "e"]);
gap:G := PcGroupCode(1052856233766732433237675855687326067142310701469027458468355603583007084539484946945180735498283858164987330433596180720808438545138753535541030900199,319440); a := G.1; b := G.3; c := G.5; d := G.8; e := G.9;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(1052856233766732433237675855687326067142310701469027458468355603583007084539484946945180735498283858164987330433596180720808438545138753535541030900199,319440)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.9;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(1052856233766732433237675855687326067142310701469027458468355603583007084539484946945180735498283858164987330433596180720808438545138753535541030900199,319440)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.9;
|
| Permutation group: | Degree $53$
$\langle(1,2,8,12,23,32)(3,9,21)(4,14,22,6,11,26)(5,15,28,17,10,25)(7,19,20,18,27,31) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 53 | (1,2,8,12,23,32)(3,9,21)(4,14,22,6,11,26)(5,15,28,17,10,25)(7,19,20,18,27,31)(13,24,30,16,29,33)(38,39,40,42,41)(43,44)(45,49)(46,53)(48,52)(50,51), (38,40,41,39,42), (1,3,12,4,5,16,18,7,13,17,6)(2,9,23,14,15,29,27,19,24,10,11)(38,41,42,40,39)(43,45,48,46,50,47,51,53,52,49,44), (1,4)(2,8,9,21,23,32,14,22,15,28,29,33,27,31,19,20,24,30,10,25,11,26)(3,12)(5,6)(13,18)(16,17)(36,37)(38,41,42,40,39)(43,46)(44,50)(45,48)(47,49)(51,52), (34,35)(36,37)(38,40,41,39,42), (1,5)(2,10)(3,4)(6,16)(7,13)(8,20)(9,24)(14,27)(15,29)(17,18)(19,23)(21,31)(22,28)(26,30)(32,33)(34,36,35,37)(38,39,40,42,41)(43,47,44,50,49,46,52,48,53,45,51), (1,6,17,13,7,18,16,5,4,12,3)(8,21,32,22,28,33,31,20,30,25,26)(38,42,39,41,40)(43,48,50,51,52,44,45,46,47,53,49), (2,9)(3,6)(4,13)(5,7)(8,22)(10,14)(11,23)(12,17)(15,24)(16,18)(19,29)(21,32)(25,33)(26,28)(30,31)(38,40,41,39,42)(43,49)(45,52)(46,51)(47,50)(48,53), (1,7,4,6,18,12,17,16,3,13,5)(2,11,10,24,19,27,29,15,14,23,9)(8,22,31,25,21,28,20,26,32,33,30)(34,35)(36,37)(38,39,40,42,41)(43,48,50,51,52,44,45,46,47,53,49) >;
gap:G := Group( (1,2,8,12,23,32)(3,9,21)(4,14,22,6,11,26)(5,15,28,17,10,25)(7,19,20,18,27,31)(13,24,30,16,29,33)(38,39,40,42,41)(43,44)(45,49)(46,53)(48,52)(50,51), (38,40,41,39,42), (1,3,12,4,5,16,18,7,13,17,6)(2,9,23,14,15,29,27,19,24,10,11)(38,41,42,40,39)(43,45,48,46,50,47,51,53,52,49,44), (1,4)(2,8,9,21,23,32,14,22,15,28,29,33,27,31,19,20,24,30,10,25,11,26)(3,12)(5,6)(13,18)(16,17)(36,37)(38,41,42,40,39)(43,46)(44,50)(45,48)(47,49)(51,52), (34,35)(36,37)(38,40,41,39,42), (1,5)(2,10)(3,4)(6,16)(7,13)(8,20)(9,24)(14,27)(15,29)(17,18)(19,23)(21,31)(22,28)(26,30)(32,33)(34,36,35,37)(38,39,40,42,41)(43,47,44,50,49,46,52,48,53,45,51), (1,6,17,13,7,18,16,5,4,12,3)(8,21,32,22,28,33,31,20,30,25,26)(38,42,39,41,40)(43,48,50,51,52,44,45,46,47,53,49), (2,9)(3,6)(4,13)(5,7)(8,22)(10,14)(11,23)(12,17)(15,24)(16,18)(19,29)(21,32)(25,33)(26,28)(30,31)(38,40,41,39,42)(43,49)(45,52)(46,51)(47,50)(48,53), (1,7,4,6,18,12,17,16,3,13,5)(2,11,10,24,19,27,29,15,14,23,9)(8,22,31,25,21,28,20,26,32,33,30)(34,35)(36,37)(38,39,40,42,41)(43,48,50,51,52,44,45,46,47,53,49) );
sage:G = PermutationGroup(['(1,2,8,12,23,32)(3,9,21)(4,14,22,6,11,26)(5,15,28,17,10,25)(7,19,20,18,27,31)(13,24,30,16,29,33)(38,39,40,42,41)(43,44)(45,49)(46,53)(48,52)(50,51)', '(38,40,41,39,42)', '(1,3,12,4,5,16,18,7,13,17,6)(2,9,23,14,15,29,27,19,24,10,11)(38,41,42,40,39)(43,45,48,46,50,47,51,53,52,49,44)', '(1,4)(2,8,9,21,23,32,14,22,15,28,29,33,27,31,19,20,24,30,10,25,11,26)(3,12)(5,6)(13,18)(16,17)(36,37)(38,41,42,40,39)(43,46)(44,50)(45,48)(47,49)(51,52)', '(34,35)(36,37)(38,40,41,39,42)', '(1,5)(2,10)(3,4)(6,16)(7,13)(8,20)(9,24)(14,27)(15,29)(17,18)(19,23)(21,31)(22,28)(26,30)(32,33)(34,36,35,37)(38,39,40,42,41)(43,47,44,50,49,46,52,48,53,45,51)', '(1,6,17,13,7,18,16,5,4,12,3)(8,21,32,22,28,33,31,20,30,25,26)(38,42,39,41,40)(43,48,50,51,52,44,45,46,47,53,49)', '(2,9)(3,6)(4,13)(5,7)(8,22)(10,14)(11,23)(12,17)(15,24)(16,18)(19,29)(21,32)(25,33)(26,28)(30,31)(38,40,41,39,42)(43,49)(45,52)(46,51)(47,50)(48,53)', '(1,7,4,6,18,12,17,16,3,13,5)(2,11,10,24,19,27,29,15,14,23,9)(8,22,31,25,21,28,20,26,32,33,30)(34,35)(36,37)(38,39,40,42,41)(43,48,50,51,52,44,45,46,47,53,49)'])
|
| Matrix group: | $\left\langle \left(\begin{array}{rrrr}
3 & 0 & 0 & 0 \\
5 & 8 & 4 & 0 \\
0 & 0 & 3 & 0 \\
6 & 0 & 6 & 8
\end{array}\right), \left(\begin{array}{rrrr}
4 & 0 & 0 & 0 \\
5 & 9 & 4 & 0 \\
2 & 2 & 10 & 0 \\
2 & 2 & 6 & 4
\end{array}\right), \left(\begin{array}{rrrr}
8 & 2 & 4 & 4 \\
7 & 2 & 10 & 2 \\
5 & 2 & 1 & 6 \\
10 & 2 & 9 & 0
\end{array}\right), \left(\begin{array}{rrrr}
3 & 2 & 9 & 8 \\
10 & 6 & 4 & 9 \\
6 & 4 & 1 & 9 \\
0 & 6 & 1 & 4
\end{array}\right), \left(\begin{array}{rrrr}
10 & 2 & 2 & 0 \\
8 & 3 & 7 & 8 \\
9 & 1 & 10 & 7 \\
9 & 7 & 10 & 10
\end{array}\right), \left(\begin{array}{rrrr}
3 & 1 & 0 & 9 \\
9 & 2 & 4 & 0 \\
9 & 10 & 8 & 6 \\
2 & 6 & 10 & 9
\end{array}\right), \left(\begin{array}{rrrr}
3 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right), \left(\begin{array}{rrrr}
8 & 0 & 0 & 0 \\
0 & 8 & 0 & 0 \\
0 & 0 & 8 & 0 \\
0 & 0 & 0 & 8
\end{array}\right), \left(\begin{array}{rrrr}
0 & 10 & 3 & 5 \\
10 & 8 & 3 & 3 \\
6 & 7 & 4 & 1 \\
0 & 6 & 1 & 1
\end{array}\right) \right\rangle \subseteq \GL_{4}(\F_{11})$ |
magma:G := MatrixGroup< 4, GF(11) | [[3, 0, 0, 0, 5, 8, 4, 0, 0, 0, 3, 0, 6, 0, 6, 8], [4, 0, 0, 0, 5, 9, 4, 0, 2, 2, 10, 0, 2, 2, 6, 4], [8, 2, 4, 4, 7, 2, 10, 2, 5, 2, 1, 6, 10, 2, 9, 0], [3, 2, 9, 8, 10, 6, 4, 9, 6, 4, 1, 9, 0, 6, 1, 4], [10, 2, 2, 0, 8, 3, 7, 8, 9, 1, 10, 7, 9, 7, 10, 10], [3, 1, 0, 9, 9, 2, 4, 0, 9, 10, 8, 6, 2, 6, 10, 9], [3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3], [8, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8], [0, 10, 3, 5, 10, 8, 3, 3, 6, 7, 4, 1, 0, 6, 1, 1]] >;
gap:G := Group([[[ Z(11)^8, 0*Z(11), 0*Z(11), 0*Z(11) ], [ Z(11)^4, Z(11)^3, Z(11)^2, 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^8, 0*Z(11) ], [ Z(11)^9, 0*Z(11), Z(11)^9, Z(11)^3 ]], [[ Z(11)^2, 0*Z(11), 0*Z(11), 0*Z(11) ], [ Z(11)^4, Z(11)^6, Z(11)^2, 0*Z(11) ], [ Z(11), Z(11), Z(11)^5, 0*Z(11) ], [ Z(11), Z(11), Z(11)^9, Z(11)^2 ]], [[ Z(11)^3, Z(11), Z(11)^2, Z(11)^2 ], [ Z(11)^7, Z(11), Z(11)^5, Z(11) ], [ Z(11)^4, Z(11), Z(11)^0, Z(11)^9 ], [ Z(11)^5, Z(11), Z(11)^6, 0*Z(11) ]], [[ Z(11)^8, Z(11), Z(11)^6, Z(11)^3 ], [ Z(11)^5, Z(11)^9, Z(11)^2, Z(11)^6 ], [ Z(11)^9, Z(11)^2, Z(11)^0, Z(11)^6 ], [ 0*Z(11), Z(11)^9, Z(11)^0, Z(11)^2 ]], [[ Z(11)^5, Z(11), Z(11), 0*Z(11) ], [ Z(11)^3, Z(11)^8, Z(11)^7, Z(11)^3 ], [ Z(11)^6, Z(11)^0, Z(11)^5, Z(11)^7 ], [ Z(11)^6, Z(11)^7, Z(11)^5, Z(11)^5 ]], [[ Z(11)^8, Z(11)^0, 0*Z(11), Z(11)^6 ], [ Z(11)^6, Z(11), Z(11)^2, 0*Z(11) ], [ Z(11)^6, Z(11)^5, Z(11)^3, Z(11)^9 ], [ Z(11), Z(11)^9, Z(11)^5, Z(11)^6 ]], [[ Z(11)^8, 0*Z(11), 0*Z(11), 0*Z(11) ], [ 0*Z(11), Z(11)^8, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^8, 0*Z(11) ], [ 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^8 ]], [[ Z(11)^3, 0*Z(11), 0*Z(11), 0*Z(11) ], [ 0*Z(11), Z(11)^3, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^3, 0*Z(11) ], [ 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^3 ]], [[ 0*Z(11), Z(11)^5, Z(11)^8, Z(11)^4 ], [ Z(11)^5, Z(11)^3, Z(11)^8, Z(11)^8 ], [ Z(11)^9, Z(11)^7, Z(11)^2, Z(11)^0 ], [ 0*Z(11), Z(11)^9, Z(11)^0, Z(11)^0 ]]]);
sage:MS = MatrixSpace(GF(11), 4, 4)
G = MatrixGroup([MS([[3, 0, 0, 0], [5, 8, 4, 0], [0, 0, 3, 0], [6, 0, 6, 8]]), MS([[4, 0, 0, 0], [5, 9, 4, 0], [2, 2, 10, 0], [2, 2, 6, 4]]), MS([[8, 2, 4, 4], [7, 2, 10, 2], [5, 2, 1, 6], [10, 2, 9, 0]]), MS([[3, 2, 9, 8], [10, 6, 4, 9], [6, 4, 1, 9], [0, 6, 1, 4]]), MS([[10, 2, 2, 0], [8, 3, 7, 8], [9, 1, 10, 7], [9, 7, 10, 10]]), MS([[3, 1, 0, 9], [9, 2, 4, 0], [9, 10, 8, 6], [2, 6, 10, 9]]), MS([[3, 0, 0, 0], [0, 3, 0, 0], [0, 0, 3, 0], [0, 0, 0, 3]]), MS([[8, 0, 0, 0], [0, 8, 0, 0], [0, 0, 8, 0], [0, 0, 0, 8]]), MS([[0, 10, 3, 5], [10, 8, 3, 3], [6, 7, 4, 1], [0, 6, 1, 1]])])
|
| Direct product: |
not computed |
| Semidirect product: |
$C_{11}^3$ $\,\rtimes\,$ $(C_{10}\times D_{12})$ |
$(C_{11}\wr C_3)$ $\,\rtimes\,$ $(D_4\times C_{10})$ |
$(C_{11}^2:C_{165})$ $\,\rtimes\,$ $(C_2\times D_4)$ |
$(C_{11}^2\times C_{55})$ $\,\rtimes\,$ $(C_2\times D_{12})$ |
more information |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
| Possibly split product: |
$(C_{11}^3:C_{30})$ . $D_4$ (2) |
$(C_{110}.D_{11}^2)$ . $S_3$ |
$(C_{11}^3:D_{12})$ . $C_{10}$ (2) |
$(C_{11}^3:D_{12})$ . $C_{10}$ |
all 60 |
Elements of the group are displayed as matrices in $\GL_{4}(\F_{11})$.
The $1915 \times 1915$ character table is not available for this group.
The $174 \times 174$ rational character table is not available for this group.