Properties

Label 3160680600.a.6841300._.B
Order $ 2 \cdot 3 \cdot 7 \cdot 11 $
Index $ 2^{2} \cdot 5^{2} \cdot 37 \cdot 43^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{231}$
Order: \(462\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 11 \)
Index: \(6841300\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 37 \cdot 43^{2} \)
Exponent: \(462\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 11 \)
Generators: $\left[ \left(\begin{array}{rr} 555 & 1313 \\ 1768 & 1124 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 1372 & 846 \\ 1301 & 1828 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 1747 & 1773 \\ 1044 & 823 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 1747 & 1777 \\ 384 & 549 \end{array}\right) \right]$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $\PSL(2,1849)$
Order: \(3160680600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43^{2} \)
Exponent: \(36752100\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(12642722400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43^{2} \)
$\operatorname{Aut}(H)$ $C_{231}.C_{30}.C_2^2$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$3420650$
Möbius function not computed
Projective image not computed