Subgroup ($H$) information
Description: | $D_{462}$ |
Order: | \(924\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \) |
Index: | \(3420650\)\(\medspace = 2 \cdot 5^{2} \cdot 37 \cdot 43^{2} \) |
Exponent: | \(462\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 11 \) |
Generators: |
$\left[ \left(\begin{array}{rr}
701 & 442 \\
1349 & 1625
\end{array}\right) \right], \left[ \left(\begin{array}{rr}
731 & 613 \\
466 & 1075
\end{array}\right) \right], \left[ \left(\begin{array}{rr}
1544 & 174 \\
27 & 1551
\end{array}\right) \right], \left[ \left(\begin{array}{rr}
1622 & 598 \\
451 & 577
\end{array}\right) \right], \left[ \left(\begin{array}{rr}
606 & 1102 \\
955 & 1817
\end{array}\right) \right]$
|
Derived length: | $2$ |
The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
Description: | $\PSL(2,1849)$ |
Order: | \(3160680600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43^{2} \) |
Exponent: | \(36752100\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43 \) |
Derived length: | $0$ |
The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | Group of order \(12642722400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43^{2} \) |
$\operatorname{Aut}(H)$ | $C_{231}.C_{30}.C_2^3$ |
$\card{W}$ | not computed |
Related subgroups
Centralizer: | not computed |
Normalizer: | not computed |
Normal closure: | not computed |
Core: | not computed |
Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
Number of subgroups in this conjugacy class | $1710325$ |
Möbius function | not computed |
Projective image | not computed |