Properties

Label 3160680600.a.3420650._.B
Order $ 2^{2} \cdot 3 \cdot 7 \cdot 11 $
Index $ 2 \cdot 5^{2} \cdot 37 \cdot 43^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{462}$
Order: \(924\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \)
Index: \(3420650\)\(\medspace = 2 \cdot 5^{2} \cdot 37 \cdot 43^{2} \)
Exponent: \(462\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 11 \)
Generators: $\left[ \left(\begin{array}{rr} 701 & 442 \\ 1349 & 1625 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 731 & 613 \\ 466 & 1075 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 1544 & 174 \\ 27 & 1551 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 1622 & 598 \\ 451 & 577 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 606 & 1102 \\ 955 & 1817 \end{array}\right) \right]$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $\PSL(2,1849)$
Order: \(3160680600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43^{2} \)
Exponent: \(36752100\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(12642722400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43^{2} \)
$\operatorname{Aut}(H)$ $C_{231}.C_{30}.C_2^3$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$1710325$
Möbius function not computed
Projective image not computed