Properties

Label 3160680600.a.1708476.a1.a1
Order $ 2 \cdot 5^{2} \cdot 37 $
Index $ 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 43^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{925}$
Order: \(1850\)\(\medspace = 2 \cdot 5^{2} \cdot 37 \)
Index: \(1708476\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 43^{2} \)
Exponent: \(1850\)\(\medspace = 2 \cdot 5^{2} \cdot 37 \)
Generators: $\left[ \left(\begin{array}{rr} 1096 & 463 \\ 1700 & 172 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 1058 & 1371 \\ 67 & 134 \end{array}\right) \right]$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $\PSL(2,1849)$
Order: \(3160680600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43^{2} \)
Exponent: \(36752100\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(12642722400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43^{2} \)
$\operatorname{Aut}(H)$ $C_{925}.C_{45}.C_4^2$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$1708476$
Möbius function not computed
Projective image not computed