Subgroup ($H$) information
Description: | $C_3^5:(C_2\times S_4)$ |
Order: | \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \) |
Index: | \(27\)\(\medspace = 3^{3} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Generators: |
$\langle(2,9,16,8,14,6)(3,11,17,10,4,12)(5,7,18)(20,24)(21,22), (1,3,16,13,17,14,15,4,2) \!\cdots\! \rangle$
|
Derived length: | $4$ |
The subgroup is maximal, nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
Description: | $C_3^7.(S_3\times S_4)$ |
Order: | \(314928\)\(\medspace = 2^{4} \cdot 3^{9} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^8.(C_2^3\times S_4)$, of order \(1259712\)\(\medspace = 2^{6} \cdot 3^{9} \) |
$\operatorname{Aut}(H)$ | $(C_3^2\times S_3^3):D_6$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \) |
$W$ | $D_5^3:C_2^2$, of order \(4000\)\(\medspace = 2^{5} \cdot 5^{3} \) |
Related subgroups
Centralizer: | not computed |
Normalizer: | $C_3^5:(C_2\times S_4)$ |
Normal closure: | $C_3^7.(S_3\times S_4)$ |
Core: | $C_3^5$ |
Other information
Number of subgroups in this autjugacy class | $27$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | $C_3^7.(S_3\times S_4)$ |