Properties

Label 314928.ge.27.A
Order $ 2^{4} \cdot 3^{6} $
Index $ 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^5:(C_2\times S_4)$
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Index: \(27\)\(\medspace = 3^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(2,9,16,8,14,6)(3,11,17,10,4,12)(5,7,18)(20,24)(21,22), (1,3,16,13,17,14,15,4,2) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^7.(S_3\times S_4)$
Order: \(314928\)\(\medspace = 2^{4} \cdot 3^{9} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^8.(C_2^3\times S_4)$, of order \(1259712\)\(\medspace = 2^{6} \cdot 3^{9} \)
$\operatorname{Aut}(H)$ $(C_3^2\times S_3^3):D_6$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$W$$D_5^3:C_2^2$, of order \(4000\)\(\medspace = 2^{5} \cdot 5^{3} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_3^5:(C_2\times S_4)$
Normal closure:$C_3^7.(S_3\times S_4)$
Core:$C_3^5$

Other information

Number of subgroups in this autjugacy class$27$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^7.(S_3\times S_4)$