Properties

Label 3145728.a.6144.J
Order $ 2^{9} $
Index $ 2^{11} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2.C_2^5$
Order: \(512\)\(\medspace = 2^{9} \)
Index: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(3,4)(5,6)(15,16)(17,18), (1,23)(2,24)(5,6)(9,10)(11,13)(12,14)(17,18)(21,22) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian. Whether it is a direct factor, a semidirect factor, metacyclic, monomial, or rational has not been computed.

Ambient group ($G$) information

Description: $C_2^{10}.C_2^7:S_4$
Order: \(3145728\)\(\medspace = 2^{20} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^8.S_4$
Order: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism Group: $D_5^3.C_2^2$, of order \(196608\)\(\medspace = 2^{16} \cdot 3 \)
Outer Automorphisms: $D_4\times C_2^3$, of order \(64\)\(\medspace = 2^{6} \)
Nilpotency class: $-1$
Derived length: $4$

The quotient is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(201326592\)\(\medspace = 2^{26} \cdot 3 \)
$\operatorname{Aut}(H)$ Group of order \(32469952757760\)\(\medspace = 2^{35} \cdot 3^{3} \cdot 5 \cdot 7 \)
$\card{W}$\(49152\)\(\medspace = 2^{14} \cdot 3 \)

Related subgroups

Centralizer:$C_2^6$
Normalizer:$C_2^{10}.C_2^7:S_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed