Properties

Label 3145728.a.49152.A
Order $ 2^{6} $
Index $ 2^{14} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^6$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(49152\)\(\medspace = 2^{14} \cdot 3 \)
Exponent: \(2\)
Generators: $\langle(3,4)(5,6)(15,16)(17,18), (19,20)(21,22), (1,2)(11,12)(13,14)(23,24), (15,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_2^{10}.C_2^7:S_4$
Order: \(3145728\)\(\medspace = 2^{20} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^5.C_2\wr S_4$
Order: \(49152\)\(\medspace = 2^{14} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism Group: $C_2^8.A_4.C_2^6.C_2^6.C_2$, of order \(25165824\)\(\medspace = 2^{23} \cdot 3 \)
Outer Automorphisms: $C_2^8.D_4$, of order \(2048\)\(\medspace = 2^{11} \)
Nilpotency class: $-1$
Derived length: $4$

The quotient is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(201326592\)\(\medspace = 2^{26} \cdot 3 \)
$\operatorname{Aut}(H)$ $\GL(6,2)$, of order \(20158709760\)\(\medspace = 2^{15} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 31 \)
$\card{W}$\(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^9.C_2^6.C_2^2$
Normalizer:$C_2^{10}.C_2^7:S_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed