Properties

Label 3080.a.3080.a1.a1
Order $ 1 $
Index $ 2^{3} \cdot 5 \cdot 7 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_1$
Order: $1$
Index: \(3080\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \cdot 11 \)
Exponent: $1$
Generators:
Nilpotency class: $0$
Derived length: $0$

The subgroup is characteristic (hence normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group (for every $p$), perfect, and rational.

Ambient group ($G$) information

Description: $C_{11}\times D_{140}$
Order: \(3080\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \cdot 11 \)
Exponent: \(1540\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_{11}\times D_{140}$
Order: \(3080\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \cdot 11 \)
Exponent: \(1540\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \cdot 11 \)
Automorphism Group: $C_{70}.C_{30}.C_2^5$
Outer Automorphisms: $C_2^3\times C_{60}$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{70}.C_{30}.C_2^5$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{11}\times D_{140}$
Normalizer:$C_{11}\times D_{140}$
Complements:$C_{11}\times D_{140}$
Minimal over-subgroups:$C_{11}$$C_7$$C_5$$C_2$$C_2$$C_2$

Other information

Möbius function$0$
Projective image$C_{11}\times D_{140}$