Subgroup ($H$) information
Description: | $C_2$ |
Order: | \(2\) |
Index: | \(1540\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \cdot 11 \) |
Exponent: | \(2\) |
Generators: |
$b^{770}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the Frattini subgroup (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group, simple, and rational.
Ambient group ($G$) information
Description: | $C_{11}\times D_{140}$ |
Order: | \(3080\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \cdot 11 \) |
Exponent: | \(1540\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \cdot 11 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Quotient group ($Q$) structure
Description: | $C_{11}\times D_{70}$ |
Order: | \(1540\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \cdot 11 \) |
Exponent: | \(770\)\(\medspace = 2 \cdot 5 \cdot 7 \cdot 11 \) |
Automorphism Group: | $C_2\times C_{10}\times F_5\times F_7$ |
Outer Automorphisms: | $C_2^2\times C_{60}$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{70}.C_{30}.C_2^5$ |
$\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_1$, of order $1$ |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(67200\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \cdot 7 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_{11}\times D_{140}$ | |||||
Normalizer: | $C_{11}\times D_{140}$ | |||||
Minimal over-subgroups: | $C_{22}$ | $C_{14}$ | $C_{10}$ | $C_4$ | $C_2^2$ | $C_2^2$ |
Maximal under-subgroups: | $C_1$ |
Other information
Möbius function | $-70$ |
Projective image | $C_{11}\times D_{70}$ |