Properties

Label 3072.gg.6.b1
Order $ 2^{9} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(512\)\(\medspace = 2^{9} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: not computed
Generators: $\langle(10,16)(12,14), (3,4)(5,7), (1,8)(2,6)(3,5)(4,7), (1,2)(3,4)(9,10,11,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: not computed
Derived length: not computed

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_2^5:(C_4\times S_4)$
Order: \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4:C_3.C_2^5.C_2^3$
$\operatorname{Aut}(H)$ not computed
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_2^6.C_2^4$
Normal closure:$C_2^5:(C_4\times S_4)$
Core:$C_2^5:C_4$
Minimal over-subgroups:$C_2^6.C_2^4$
Maximal under-subgroups:$C_2^5.D_4$$C_2^5.D_4$$C_2^4.C_2^4$$C_2^4.C_2^4$$C_2^2.D_4^2$$C_2^2.D_4^2$$C_2^4.C_2^4$$C_2^4.C_2^4$$C_4^2:C_2^4$$C_2^2.D_4^2$$C_2^3.C_2^5$$C_2^5.D_4$$C_2^5.D_4$$C_2^5.D_4$$C_2^5.D_4$$C_2^2.D_4^2$$C_2^2.D_4^2$$C_2^4.C_2^4$$C_2^4.C_2^4$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed