Properties

Label 3072.gg.12.i1
Order $ 2^{8} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5.D_4$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,3)(2,4)(5,6)(7,8)(9,12,15,14)(10,13,16,11), (3,4)(5,7), (10,16)(12,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2^5:(C_4\times S_4)$
Order: \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4:C_3.C_2^5.C_2^3$
$\operatorname{Aut}(H)$ $C_2^{10}.D_4^2$, of order \(65536\)\(\medspace = 2^{16} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_2^4.C_2^5$
Normal closure:$C_2^5:(C_4\times S_4)$
Core:$C_2^3$
Minimal over-subgroups:$C_2^4.C_2^5$
Maximal under-subgroups:$C_2^4:D_4$$C_2^5:C_4$$C_2^5:C_4$$C_2^4.D_4$$C_2^4.D_4$$C_2^4.D_4$$C_2^4.D_4$$C_2^5:C_4$$C_2^5:C_4$$C_2^4.D_4$$C_2^4.D_4$$C_2^4.D_4$$C_2^4.D_4$$C_2^4.D_4$$C_2^4.D_4$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed