Properties

Label 3072.dk.24.p1.b1
Order $ 2^{7} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{16}:C_2^2$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $ab^{7}c^{2}d^{3}, c^{5}d^{6}, b^{6}c^{2}d^{6}, c^{8}d^{4}$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_3\times Q_{16}^2:C_2^2$
Order: \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class:$7$
Derived length:$3$

The ambient group is nonabelian and elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_4^2.C_2^4.C_2^4$
$\operatorname{Aut}(H)$ $D_8:C_4\times S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{res}(S)$$C_4^3.C_2^3$, of order \(512\)\(\medspace = 2^{9} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_4\times D_8$, of order \(128\)\(\medspace = 2^{7} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_{12}.D_4^2$
Normal closure:$D_{16}:D_8$
Core:$C_2\times C_4$
Minimal over-subgroups:$C_{48}.C_2^3$$D_{16}:D_4$
Maximal under-subgroups:$\OD_{32}:C_2$$D_{16}:C_2$$Q_{32}:C_2$$D_8:C_2^2$$D_4.D_4$$D_{16}:C_2$$C_2\times \SD_{32}$$Q_{32}:C_2$$D_{16}:C_2$$C_2\times \SD_{32}$$D_{16}:C_2$
Autjugate subgroups:3072.dk.24.p1.a1

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$0$
Projective image$C_3 \times ((C_4:D_8) . C_2^3)$