Properties

Label 3072.dk.12.j1.b1
Order $ 2^{8} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{16}:D_4$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $ab^{7}c^{14}d^{5}, c, b^{6}c^{2}d^{6}, c^{4}d^{6}$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_3\times Q_{16}^2:C_2^2$
Order: \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class:$7$
Derived length:$3$

The ambient group is nonabelian and elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_4^2.C_2^4.C_2^4$
$\operatorname{Aut}(H)$ $C_4^2.C_2^3.C_2^4$
$\card{\operatorname{res}(S)}$\(1024\)\(\medspace = 2^{10} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_8^2$, of order \(256\)\(\medspace = 2^{8} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_6.D_8^2$
Normal closure:$D_{16}:D_8$
Core:$C_2.D_4^2$
Minimal over-subgroups:$C_{12}.D_4^2$$D_{16}:D_8$
Maximal under-subgroups:$C_2.D_4^2$$C_{16}.D_4$$D_8:D_4$$C_8.D_8$$C_{16}.D_4$$D_4.D_8$$D_4.D_8$$D_8:D_4$$D_{16}:C_4$$D_{16}:C_2^2$$C_{16}:D_4$
Autjugate subgroups:3072.dk.12.j1.a1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_3 \times ((C_4:D_8) . C_2^3)$