Subgroup ($H$) information
Description: | $C_8$ |
Order: | \(8\)\(\medspace = 2^{3} \) |
Index: | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
Exponent: | \(8\)\(\medspace = 2^{3} \) |
Generators: |
$\left(\begin{array}{rr}
3 & 0 \\
0 & 3
\end{array}\right)$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, and a $p$-group.
Ambient group ($G$) information
Description: | $(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
Order: | \(3072\)\(\medspace = 2^{10} \cdot 3 \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
Description: | $C_4.\GL(2,\mathbb{Z}/4)$ |
Order: | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Automorphism Group: | $\GL(2,\mathbb{Z}/4):C_2^4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
Outer Automorphisms: | $C_2^4$, of order \(16\)\(\medspace = 2^{4} \) |
Nilpotency class: | $-1$ |
Derived length: | $3$ |
The quotient is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_4\times A_4).C_2^5.C_2^6$ |
$\operatorname{Aut}(H)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
$\card{W}$ | $1$ |
Related subgroups
Other information
Möbius function | not computed |
Projective image | not computed |