Properties

Label 3072.cc.384.i1.a1
Order $ 2^{3} $
Index $ 2^{7} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $\left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, and a $p$-group.

Ambient group ($G$) information

Description: $(C_4\times C_8).\GL(2,\mathbb{Z}/4)$
Order: \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_4.\GL(2,\mathbb{Z}/4)$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism Group: $\GL(2,\mathbb{Z}/4):C_2^4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Outer Automorphisms: $C_2^4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_4\times A_4).C_2^5.C_2^6$
$\operatorname{Aut}(H)$ $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\card{W}$$1$

Related subgroups

Centralizer:$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$
Normalizer:$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$
Minimal over-subgroups:$C_{24}$$C_2\times C_8$$C_2\times C_8$$C_2\times C_8$$C_2\times C_8$$C_2\times C_8$$C_2\times C_8$$C_2\times C_8$$C_{16}$$C_{16}$
Maximal under-subgroups:$C_4$
Autjugate subgroups:3072.cc.384.i1.b1

Other information

Möbius function not computed
Projective image not computed