Properties

Label 3072.cc.384.cl1.a1
Order $ 2^{3} $
Index $ 2^{7} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $\left(\begin{array}{rr} 29 & 24 \\ 8 & 5 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $(C_4\times C_8).\GL(2,\mathbb{Z}/4)$
Order: \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_4\times A_4).C_2^5.C_2^6$
$\operatorname{Aut}(H)$ $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\card{W}$\(2\)

Related subgroups

Centralizer:$C_2^3\times C_4\times C_{16}$
Normalizer:$(C_2^3\times C_4\times C_{16}).C_2$
Normal closure:$C_2^2\times C_8$
Core:$C_4$
Minimal over-subgroups:$C_2\times C_8$$C_2\times C_8$$C_2\times C_8$$C_2\times C_8$$C_2\times C_8$$C_2\times C_8$$C_2\times C_8$$C_2\times C_8$$C_2\times C_8$$C_2\times C_8$$C_2\times C_8$
Maximal under-subgroups:$C_4$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function not computed
Projective image not computed