Subgroup ($H$) information
Description: | $C_2^3:C_{24}$ |
Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Index: | \(16\)\(\medspace = 2^{4} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Generators: |
$\left(\begin{array}{rr}
23 & 0 \\
0 & 23
\end{array}\right), \left(\begin{array}{rr}
1 & 16 \\
16 & 1
\end{array}\right), \left(\begin{array}{rr}
17 & 0 \\
0 & 17
\end{array}\right), \left(\begin{array}{rr}
5 & 8 \\
24 & 13
\end{array}\right), \left(\begin{array}{rr}
17 & 0 \\
16 & 17
\end{array}\right), \left(\begin{array}{rr}
12 & 27 \\
25 & 19
\end{array}\right), \left(\begin{array}{rr}
25 & 16 \\
16 & 9
\end{array}\right)$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
Order: | \(3072\)\(\medspace = 2^{10} \cdot 3 \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
Description: | $\OD_{16}$ |
Order: | \(16\)\(\medspace = 2^{4} \) |
Exponent: | \(8\)\(\medspace = 2^{3} \) |
Automorphism Group: | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
Outer Automorphisms: | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_4\times A_4).C_2^5.C_2^6$ |
$\operatorname{Aut}(H)$ | $\GL(2,\mathbb{Z}/4):C_2^2$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
$\card{W}$ | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Other information
Möbius function | not computed |
Projective image | not computed |