Properties

Label 3072.bkj.1536._.B
Order $ 2 $
Index $ 2^{9} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(2\)
Generators: $\langle(12,16)(13,14)(15,19)(17,18)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group, simple, and rational. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $S_3\times C_2^5.C_2^4$
Order: \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and rational.

Quotient group ($Q$) structure

Description: $S_3\times C_2^5:D_4$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^2\times C_2^7.A_4.C_2^5\times S_3$
Outer Automorphisms: $C_3^2:D_6\times S_4$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^5:D_6$, of order \(2359296\)\(\medspace = 2^{18} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed