Subgroup ($H$) information
| Description: | $C_2$ |
| Order: | \(2\) |
| Index: | \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
| Exponent: | \(2\) |
| Generators: |
$\langle(12,16)(13,14)(15,19)(17,18)\rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group, simple, and rational. Whether it is a direct factor or a semidirect factor has not been computed.
Ambient group ($G$) information
| Description: | $S_3\times C_2^5.C_2^4$ |
| Order: | \(3072\)\(\medspace = 2^{10} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and rational.
Quotient group ($Q$) structure
| Description: | $S_3\times C_2^5:D_4$ |
| Order: | \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Automorphism Group: | $C_2^2\times C_2^7.A_4.C_2^5\times S_3$ |
| Outer Automorphisms: | $C_3^2:D_6\times S_4$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^5:D_6$, of order \(2359296\)\(\medspace = 2^{18} \cdot 3^{2} \) |
| $\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
| $\card{W}$ | not computed |
Related subgroups
| Centralizer: | not computed |
| Normalizer: | not computed |
| Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
| Möbius function | not computed |
| Projective image | not computed |