Properties

Label 1536.201107024
Order \( 2^{9} \cdot 3 \)
Exponent \( 2^{2} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{5} \)
$\card{Z(G)}$ \( 2^{2} \)
$\card{\Aut(G)}$ \( 2^{17} \cdot 3^{2} \)
$\card{\mathrm{Out}(G)}$ \( 2^{10} \cdot 3 \)
Perm deg. not computed
Trans deg. $96$
Rank $5$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath (using Gap)

Copy content magma:G := SmallGroup(1536, 201107024);
 
Copy content gap:G := SmallGroup(1536, 201107024);
 
Copy content sage:G = libgap.SmallGroup(1536, 201107024)
 
Copy content comment:Define the group with the given generators and relations
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(6366885661907235155562152500026202126400407890380803713152,1536)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.8; g = G.10;
 

Group information

Description:$S_3\times C_2^5:D_4$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage:G.Order()
 
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage:G.Exponent()
 
Automorphism group:$C_2^2\times C_2^7.A_4.C_2^5\times S_3$, of order \(1179648\)\(\medspace = 2^{17} \cdot 3^{2} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 9, $C_3$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage:G.DerivedLength()
 

This group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and rational.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 12
Elements 1 383 2 640 190 320 1536
Conjugacy classes   1 57 1 40 28 20 147
Divisions 1 57 1 40 28 20 147
Autjugacy classes 1 14 1 6 8 3 33

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage:G.CharacterDegrees()
 

Dimension 1 2 4 8 16
Irr. complex chars.   32 72 36 6 1 147
Irr. rational chars. 32 72 36 6 1 147

Minimal presentations

Permutation degree:not computed
Transitive degree:$96$
Rank: $5$
Inequivalent generating 5-tuples: $2133196800$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible none none none
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath (using Gap)


Presentation: ${\langle a, b, c, d, e, f, g \mid a^{2}=b^{6}=c^{4}=e^{2}=f^{4}=g^{2}=[a,c]= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([10, -2, -2, -3, -2, -2, -2, -2, -2, -2, 2, 201, 51, 242, 733, 113, 4335, 755, 535, 38417, 6437, 547, 237, 2459]); a,b,c,d,e,f,g := Explode([G.1, G.2, G.4, G.6, G.7, G.8, G.10]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "e", "f", "f2", "g"]);
 
Copy content gap:G := PcGroupCode(6366885661907235155562152500026202126400407890380803713152,1536); a := G.1; b := G.2; c := G.4; d := G.6; e := G.7; f := G.8; g := G.10;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(6366885661907235155562152500026202126400407890380803713152,1536)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.8; g = G.10;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(6366885661907235155562152500026202126400407890380803713152,1536)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.8; g = G.10;
 
Direct product: $S_3$ $\, \times\, $ $(C_2^5:D_4)$
Semidirect product: $C_2^5$ $\,\rtimes\,$ $(S_3\times D_4)$ $(D_6.D_4^2)$ $\,\rtimes\,$ $C_2$ $(D_6\times C_2^4)$ $\,\rtimes\,$ $D_4$ $(D_6:C_2^4)$ $\,\rtimes\,$ $D_4$ all 109
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $C_2^4$ . $(D_4\times D_6)$ (3) $D_6$ . $(C_2^4:D_4)$ $D_6$ . $(C_2^4:D_4)$ $C_6$ . $(C_2^5:D_4)$ all 49

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2}^{5} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{13}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage:G.AllSubgroups()
 

There are 198282 subgroups in 39956 conjugacy classes, 1147 normal (43 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2^2$ $G/Z \simeq$ $C_2^5:D_6$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage:G.Center()
 
Commutator: $G' \simeq$ $C_2^3\times C_6$ $G/G' \simeq$ $C_2^5$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2^4$ $G/\Phi \simeq$ $C_2^3\times D_6$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3\times C_2^5:D_4$ $G/\operatorname{Fit} \simeq$ $C_2$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage:G.FittingSubgroup()
 
Radical: $R \simeq$ $S_3\times C_2^5:D_4$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2\times C_6$ $G/\operatorname{soc} \simeq$ $C_2^4:D_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2\times C_2^4.C_2^4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$

Subgroup diagram and profile

Series

Derived series $S_3\times C_2^5:D_4$ $\rhd$ $C_2^3\times C_6$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage:G.DerivedSeriesOfGroup()
 
Chief series $S_3\times C_2^5:D_4$ $\rhd$ $S_3\times C_2^4.D_4$ $\rhd$ $(C_2^3\times C_{12}):C_2^2$ $\rhd$ $C_2^4.D_4$ $\rhd$ $D_4:C_2^3$ $\rhd$ $D_4:C_2^2$ $\rhd$ $C_2\times D_4$ $\rhd$ $C_2\times C_4$ $\rhd$ $C_2^2$ $\rhd$ $C_2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage:G.ChiefSeries()
 
Lower central series $S_3\times C_2^5:D_4$ $\rhd$ $C_2^3\times C_6$ $\rhd$ $C_6$ $\rhd$ $C_3$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2^2$ $\lhd$ $C_2^5$ $\lhd$ $C_2^5:D_4$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 5 larger groups in the database.

This group is a maximal quotient of 4 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

Every character has rational values, so the complex character table is the same as the rational character table below.

Rational character table

See the $147 \times 147$ rational character table (warning: may be slow to load). Alternatively, you may search for characters of this group with desired properties.