Properties

Label 300.46.30.a1.b1
Order $ 2 \cdot 5 $
Index $ 2 \cdot 3 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $b^{15}, a^{2}b^{12}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.

Ambient group ($G$) information

Description: $D_6\times C_5^2$
Order: \(300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_5\times S_3$
Order: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Automorphism Group: $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6\times \GL(2,5)$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(S)$$C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$D_6\times C_5^2$
Normalizer:$D_6\times C_5^2$
Complements:$C_5\times S_3$ $C_5\times S_3$ $C_5\times S_3$ $C_5\times S_3$ $C_5\times S_3$ $C_5\times S_3$ $C_5\times S_3$ $C_5\times S_3$ $C_5\times S_3$ $C_5\times S_3$
Minimal over-subgroups:$C_5\times C_{10}$$C_{30}$$C_2\times C_{10}$
Maximal under-subgroups:$C_5$$C_2$
Autjugate subgroups:300.46.30.a1.a1300.46.30.a1.c1300.46.30.a1.d1300.46.30.a1.e1300.46.30.a1.f1

Other information

Möbius function$-3$
Projective image$C_5\times S_3$