Properties

Label 300.46.10.b1.g1
Order $ 2 \cdot 3 \cdot 5 $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times S_3$
Order: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $a^{5}b^{25}, b^{20}, a^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a direct factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $D_6\times C_5^2$
Order: \(300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6\times \GL(2,5)$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(20\)\(\medspace = 2^{2} \cdot 5 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_5\times C_{10}$
Normalizer:$D_6\times C_5^2$
Complements:$C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$
Minimal over-subgroups:$S_3\times C_5^2$$S_3\times C_{10}$
Maximal under-subgroups:$C_{15}$$C_{10}$$S_3$
Autjugate subgroups:300.46.10.b1.a1300.46.10.b1.b1300.46.10.b1.c1300.46.10.b1.d1300.46.10.b1.e1300.46.10.b1.f1300.46.10.b1.h1300.46.10.b1.i1300.46.10.b1.j1300.46.10.b1.k1300.46.10.b1.l1

Other information

Möbius function$1$
Projective image$S_3\times C_{10}$